Skip to main content
Log in

Biohydroxylation of (−)-Ambrox®, (−)-Sclareol, and (+)-Sclareolide by Whole Cells of Brazilian Marine-Derived Fungi

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A screening was performed using nine marine-derived fungi as biocatalysts and the natural products (−)-ambrox® (1), (−)-sclareol (2), and (+)-sclareolide (3) in order to select the microorganisms able to catalyze the biooxidation of these compounds. It was observed that only the Aspergillus sydowii CBMAI 934, Botryosphaeria sp., Eutypella sp., and Xylaria sp. presented active oxidoreductases and catalyzed the regioselective hydroxylation in the natural products. The hydroxylated metabolites obtained were 1β-hydroxy-ambrox (1a) (14 %, A. sydowii CBMAI 934); 3β-hydroxy-ambrox (1b) (17 %, Botryosphaeria sp.; 11 %, Eutypella sp.); 3β-hydroxy-sclareol (2a) (31 %, Xylaria sp.; 69 %, Botryosphaeria sp.; 55 %, Eutypella sp.); 18-hydroxy-sclareol (2b) (10 %, Xylaria sp.); and 3β-hydroxy-sclareolide (3a) (34 %, Botryosphaeria sp.; 7 %, Eutypella sp.). This is the first report of biohydroxylation of (−)-ambrox® (1), (−)-sclareol (2), and (+)-sclareolide (3) by whole mycelia of marine-derived fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  • Abraham WR (1994) Microbial hydroxylation of sclareol. Phytochemistry 36:1421–1424

    Article  Google Scholar 

  • Allendes JA, Bustos DA, Pacciaroni ADV, Sosa VE, Bustos DA (2011) Microbial functionalization of (−)-ambroxide by filamentous fungi. Biocatal Biotransfor 29:83–86

    Article  CAS  Google Scholar 

  • Aranda G, Lallemand JY, Mammoumi A, Azerad R (1991) Microbial hydroxylation of sclareol by Mucor plumbeus. Tetrahedron Lett 32:1783–1786

    Article  CAS  Google Scholar 

  • Ata A, Conci LJ, Betteridge J, Orhan I, Sener B (2007) Novel microbial transformations of sclareolide. Chem Pharm Bull 55:118–123

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman FA, Choudhary M (1997) I. Microbial transformation of sclareolide. J Nat Prod 60:1038–1040

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Ramírez-Apan MT, Delgado G (2011) Biotransformation of sclareolide by filamentous fungi: cytotoxic evaluations of the derivatives. J Braz Chem Soc 22:1177–1182

    Article  CAS  Google Scholar 

  • Choudhary MI, Musharraf SG, Sami A, Rahman A (2004) Microbial transformation of sesquiterpenes (−)-ambrox and (+)-sclareolide. Helv Chim Acta 87:2685–2694

    Article  CAS  Google Scholar 

  • De Carvalho CCCR, Da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142

    Article  PubMed  Google Scholar 

  • Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218

    CAS  PubMed  Google Scholar 

  • Díez D, Sanchez JM, Rodilla JM, Rocha PM, Mendes RS, Paulino C, Marcos IS, Basabe P, Urones JG (2005) Microbial hydroxylation of sclareol by Rhizopus stolonifer. Molecules 10:1005–1009

    Article  PubMed  Google Scholar 

  • Feng Z, Nenkep VN, Yun K, Zhang D, Choi HD, Kang JS, Son BW (2010) Biotransformation of bioactive (−)-mellein by a marine isolate of bacterium Stappia sp. J Microbiol Biotechnol 20:985–987

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR, Truneh A (1996) The biotransformation of ambrox and sclareolide by Cephalosporium aphidicola. Photochemistry 42:1021–1023

    Article  CAS  Google Scholar 

  • Hanson JR, Hitchcock PB, Nasir H, Truneh A (1994) The biotransformation of the diterpenoid, sclareol, by Cephalosporium aphidicola. Photochemistry 36:903–906

    Article  CAS  Google Scholar 

  • Klemke C, Kehraus S, Wright AD, Konig GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J (1974) Higher fungi as parasites and symbionts of algae. VeröffInst Meeresforsch Bremenh 5:339–356

    Google Scholar 

  • Koshimura M, Utsukihara T, Kawamoto M, Saito M, Horiuchi CA, Kuniyoshi M (2009) Biotransformation of bromo-sesquiterpenes by marine fungi. Photochemistry 70:2023–2026

    Article  CAS  Google Scholar 

  • Kouzi SA, McChesney JD (1991) Microbial models of mammalian metabolism: fungal metabolism of the diterpenesclareol by Cunningahmella species. J Nat Prod 54:483–490

    Article  CAS  PubMed  Google Scholar 

  • Nasib A, Musharraf SG, Hussain S, Khan S, Anjum S, Ali S, Rahman A, Choudhary MI (2006) Biotransformation of (−)-ambrox by cell suspension cultures of Actinidia deliciosa. J Nat Prod 69:957–959

    Article  CAS  PubMed  Google Scholar 

  • Osterhage C, Konig GM, Holler U, Wright AD (2002) Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod 65:306–313

    Article  CAS  PubMed  Google Scholar 

  • Rovirosa J, Astudillo L, Sanchez I, Palacios Y, San-Martin A (1989) Antimicrobial activity of halogenated sesquiterpenes of Laurencia claviformis from Easter Island. Bol de la Sociedad Chilena de Quimica 34:147–152

    CAS  Google Scholar 

  • San-Martín A, Rovirosa J, Astudillo L, Sepúlveda B, Ruiz D, San-Martín C (2008) Biotransformation of the marine sesquiterpene pacifenol by a facultative marine fungus. Nat Prod Res 22:1627–1632

    Article  PubMed  Google Scholar 

  • Sarkar S, Pramanik A, Mitra A, Mukherjee J (2010) Bioprocessing data for the production of marine enzymes. Mar Drugs 8:1323–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenius BSM, Schroeder EK, Achenato RA (2000) Ambergris: perfume e síntese. Quim Nova 23:225–230

    Article  CAS  Google Scholar 

  • Trincone A (2010) Potential biocatalysts originating from sea environments. J Mol Catal B Enzym 66:241–256

    Article  CAS  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. L. M. Porto gratefully acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for their financial support. M. P. Martins thanks CAPES for the scholarships (Sandwich). The authors wish to thank Professor Roberto G. S. Berlinck for donating the marine-derived fungi and also wish to thank Professor Timothy John Brockson (Universidade Federal de São Carlos) for optical rotation measurements. The authors also thank Sylvie Cordial and Claudine Servy for the discussions and suggestions during the development of work. The English language was reviewed by Timothy Roberts, MSc., a native English speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. M. Porto.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 9457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.P., Ouazzani, J., Arcile, G. et al. Biohydroxylation of (−)-Ambrox®, (−)-Sclareol, and (+)-Sclareolide by Whole Cells of Brazilian Marine-Derived Fungi. Mar Biotechnol 17, 211–218 (2015). https://doi.org/10.1007/s10126-015-9610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9610-7

Keywords

Navigation