Skip to main content
Log in

Silicatein Genes in Spicule-Forming and Nonspicule-forming Pacific Demosponges

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Silicatein genes are known to be involved in siliceous spicule formation in marine sponges. Proteins encoded by these genes, silicateins, were recently proposed for nanobiotechnological applications. We studied silicatein genes of marine sponges Latrunculia oparinae collected in the west Pacific region, shelf of Kuril Islands. Five silicatein genes, LoSilA1, LoSilA1a, LoSilA2, and LoSilA3 (silicatein-α group), LoSilB (silicatein-β group), and one cathepsin gene, LoCath, were isolated from the sponge L. oparinae for the first time. The deduced amino acid sequence of L. oparinae silicateins showed high-sequence identity with silicateins described previously. LoCath contains the catalytic triad of amino acid residues Cys-His-Asn characteristic for cathepsins as well as motifs typical for silicateins. A phylogenetic analysis places LoCath between sponge silicateins-β and L-cathepsins suggesting that the LoCath gene represents an intermediate form between silicatein and cathepsin genes. Additionally, we identified, for the first time, silicatein genes (AcSilA and AcSilB) in nonspicule-forming marine sponge, Acаnthodendrilla sp. The results suggest that silicateins could participate also in the function(s) unrelated to spiculogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Berti P, Storer A (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283

    Article  CAS  PubMed  Google Scholar 

  • Brutchey RL, Morse DE (2008) Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev 108:4915–4934

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Shimizu K, Zhou Y, Christiansen S, Chmelka B, Stucky G, Morse D (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich H, Worch H (2007a) Collagen: a huge matrix in glass sponge flexible spicules of the meter-long Hyalonema sieboldi. In: Bäuerlein E (ed) Handbook of biomineralization. Wiley VCH, Weinheim, pp 23–41

    Google Scholar 

  • Ehrlich H, Worch H (2007b) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu National, Rio de Janeiro, Brasil, pp 303–312

    Google Scholar 

  • Ehrlich H, Krautter M, Hanke T, Simon P, Knieb C, Heinemann S, Worch H (2007) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool (Mol Dev Evol) 308B:437–483

    Google Scholar 

  • Ehrlich H, Heinemann S, Heinemann C, Simon P, Bazhenov VV, Shapkin NP, Born R, Tabachnick KR, Hanke T, Worch H (2008a) Nanostructural organization of naturally occurring composites—Part I: silica–collagen-based biocomposites. J Nanomater. doi:10.1155/2008/623838

    Google Scholar 

  • Ehrlich H, Janussen D, Simon P, Bazhenov V, Shapkin NP, Erler C, Mertig M, Born R, Heinemann S, Hanke T, Worch H, Vournakis JN (2008b) Nanostructural organization of naturally occurring composites. Part II. Silica–chitin-based biocomposites. J Nanomater. doi:10.1155/2008/670235

    Google Scholar 

  • Fairhead M, Johnson K, Kowatz T, McMahon S, Carter L, Oke M, Liu H, Naismith J, van der Walle C (2008) Crystal structure and silica condensing activities of silicatein alpha–cathepsin L chimeras. Chem Commun (Camb) 15:1765–1767

    Article  Google Scholar 

  • Heinemann S, Erhlich H, Knieb C, Hanke T (2007) Biogenetically inspired hybrid materials based on silicified collagen. Int J Mat Res 98:603–608

    CAS  Google Scholar 

  • Kaluzhnaya O, Belikov S, Schröder H, Wiens M, Giovine M, Krasko A, Müller I, Müller W (2005) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92:134–138

    Article  CAS  PubMed  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder H, Müller I, Müller W (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncola is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Matz M, Shagin D, Bogdanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 2:1558–1560

    Article  Google Scholar 

  • Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237:3024–3039

    Article  CAS  PubMed  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    Article  CAS  Google Scholar 

  • Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A, Raheli F, Benatti U, Müller W, Giovine M (2004) Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY) 6:594–603

    Article  CAS  Google Scholar 

  • Samaai T, Krasokhin V (2002) Latrunculia oparinae sp. nov. (Demospongiae, Poecilosclerida, Latrunculiidae) from the Kurile Islands, Sea of Okhotsk, Russia. Beaufortia 52:95–101

    Google Scholar 

  • Schröder H, Brandt D, Schlobmacher U, Wang X, Tahir M, Tremel W, Belikov S, Müller W (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359

    Article  PubMed  Google Scholar 

  • Schröder H, Wang X, Tremel W, Ushijima H, Müller W (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–74

    Article  PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky G, Morse D (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Grant Program “Creation, investigation, and modeling of biogenic and biomimetic nanomaterials” of the Far Eastern Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri B. Kozhemyako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhemyako, V.B., Veremeichik, G.N., Shkryl, Y.N. et al. Silicatein Genes in Spicule-Forming and Nonspicule-forming Pacific Demosponges. Mar Biotechnol 12, 403–409 (2010). https://doi.org/10.1007/s10126-009-9225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9225-y

Keywords

Navigation