Skip to main content

Advertisement

Log in

A Review of the Functionality of Probiotics in the Larviculture Food Chain

  • Invited Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

During the past two decades, the use of probiotics as an alternative to the use of antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larviculture. This article reviews the studies on probiotics in larviculture, focusing on the current knowledge of their in vivo mechanisms of action. The article highlights that the in vivo mechanisms of action largely remain to be unravelled. Several methodologies are suggested for further in vivo research, including studies on gut microbiota composition, the use of gnotobiotic animals as test models, and the application of molecular techniques to study host–microbe and microbe–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba Y, Suzuki N, Kabir AMA, Takagi A, Koga Y (1998) Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93, 2097–2101

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1999) Probiotics—snake oil for the new millennium? Environ Microbiol 1, 375–382

    Article  Google Scholar 

  • Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114, 173–186

    Article  PubMed  Google Scholar 

  • Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE (2001) Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39, 126–135

    Article  PubMed  CAS  Google Scholar 

  • Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 2–7

    Article  PubMed  CAS  Google Scholar 

  • Berg RD (1998) Probiotics, prebiotics or “conbiotics”? Trends Microbiol 6, 89–92

    Article  PubMed  CAS  Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281, 36269–36279

    Article  PubMed  CAS  Google Scholar 

  • Bruhn JB, Dalsgaard I, Nielsen KF, Buchholtz C, Larsen JL, Gram L (2005) Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria. Dis Aquat Org 65, 43–52

    Article  PubMed  CAS  Google Scholar 

  • Bruno DW (1988) The relationship between auto-agglutination, cell surface hydrophobicity and virulence of the fish pathogen Renibacterium salmoninarum. FEMS Microbiol Lett 51, 135–140

    Article  Google Scholar 

  • Burr G, Gatlin D, Ricke S (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquacult Soc 36, 425–436

    Article  Google Scholar 

  • Cahu CL, Zambonino Infante JL, Peres A, Quazuguel P, Le Gall MM (1998) Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161, 479–489

    Article  CAS  Google Scholar 

  • Cunningham CO (2002) Molecular diagnosis of fish and shellfish diseases: present status and potential use in disease control. Aquaculture 206, 19–55

    Article  CAS  Google Scholar 

  • Dahm R, Geisler R (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol 8, 1–17

    Article  CAS  Google Scholar 

  • De Diego JG, Rodriguez FD, Lorenzo JLR, Grappin P, Cervantes E (2006) cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J Plant Physiol 163, 452–462

    Article  PubMed  CAS  Google Scholar 

  • Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240, 69–88

    Article  Google Scholar 

  • Defoirdt T, Bossier P, Sorgeloos P, Verstraete W (2005) The impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and Vibrio harveyi on their virulence towards gnotobiotically cultured Artemia franciscana. Environ Microbiol 7, 1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing—disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72, 6419–6423

    Article  PubMed  CAS  Google Scholar 

  • Dopazo CP, Lemos ML, Lodeiros C, Bolinches J, Barja JL, Toranzo AE (1988) Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J Appl Bacteriol 65, 97–101

    PubMed  CAS  Google Scholar 

  • Douillet P, Langdon CJ (1993) Effects of marine bacteria on the culture of axenic oyster Crassostrea gigas (Thunberg) larvae. Biol Bull 184, 36–51

    Article  Google Scholar 

  • Eddy SD, Jones SH (2002) Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery. Aquaculture 211, 9–28

    Article  Google Scholar 

  • Erasmus JH, Cook PA, Coyne VE (1997) The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 155, 377–386

    Article  CAS  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112, 1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Fjellheim AJ (2006) Selection and Administration of Probiotic Bacteria to Marine Fish Larvae. PhD thesis, Norwegian University of Science and Technology, 217 pp

  • Fredrickson AG, Stephanopoulos G (1981) Microbial competition. Science 213, 972–979

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66, 365–378

    PubMed  CAS  Google Scholar 

  • Garcia AT, Olmos JS (2007) Quantification by fluorescent in situ hybridization of bacteria associated with Litopenaeus vannamei larvae in Mexican shrimp hatchery. Aquaculture 262, 211–218

    Article  CAS  Google Scholar 

  • Gatesoupe FJ (1997) Siderophore production and probiotic effect of Vibrio sp. associated with turbot larvae, Scophthalmus maximus. Aquatic Liv Res 10, 239–246

    Article  Google Scholar 

  • Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassosstrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169, 111–120

    Article  Google Scholar 

  • Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270

    Article  Google Scholar 

  • Gomez-Gil B, Soto-Rodriguez S, Garcia-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. Microbiol SGM 150, 1769–1777

    Article  CAS  Google Scholar 

  • Gram L, Lovold T, Nielsen J, Melchiorsen J, Spanggaard B (2001) In vitro antagonism of the probiont Pseudomonas fluorescens strain AH2 against Aeromonas salmonicida does not confer protection of salmon against furunculosis. Aquaculture 199, 1–11

    Article  Google Scholar 

  • Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38, 1–26

    Article  PubMed  Google Scholar 

  • Hegarty MJ, Jones JM, Wilson ID, Barker GL, Coghill JA, Sanchez-Baracaldo P, Liu GQ, Buggs RJA, Abbott RJ, Edwards KJ, Hiscock SJ (2005) Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol 14, 2493–2510

    Article  PubMed  CAS  Google Scholar 

  • Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186, 6902–6914

    Article  PubMed  CAS  Google Scholar 

  • Hooi DSW, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72, 6463–6470

    Article  PubMed  CAS  Google Scholar 

  • Hossain H, Tchatalbachev S, Chakraborty T (2006) Host gene expression profiling in pathogen-host interactions. Curr Opin Immunol 18, 422–429

    Article  PubMed  CAS  Google Scholar 

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25, 633–642

    Article  Google Scholar 

  • Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiol Immunol 32, 67–73

    PubMed  CAS  Google Scholar 

  • Lategan MJ, Booth W, Shimmon R, Gibson LF (2006) An inhibitory substance produced by Aeromonas media A199, an aquatic probiotic. Aquaculture 254, 115–124

    Article  CAS  Google Scholar 

  • Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88, 101–108

    Article  CAS  Google Scholar 

  • Lee YK, Ho PS, Low CS, Arvilommi H, Salminen S (2004) Permanent colonization of Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Appl Environ Microbiol 70, 670–674

    Article  PubMed  CAS  Google Scholar 

  • Maeda M (1994) Biocontrol of the larvae rearing biotope in aquaculture. Bull Natl Res Inst Aquacult 1, 71–74

    Google Scholar 

  • Maeda M, Liao IC (1992) Effect of bacterial population on the growth of a prawn larva, Penaeus monodon. Bull Natl Res Inst Aquacult 21, 25–29

    Google Scholar 

  • Magnelli P, Cipollo JF, Abeijon C (2002) A refined method for the determination of Saccharomyces cerevisiae cell wall composition and â-1,6-glucan fine structure. Anal Biochem 301, 136–150

    Article  PubMed  CAS  Google Scholar 

  • Maia OB, Duarte R, Silva AM, Cara DC, Nicoli JR (2001) Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Vet Microbiol 79, 183–189

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg SA (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145, 283–291

    Article  PubMed  CAS  Google Scholar 

  • Marques A, Dinh TT, Ioakeimidis C, Huys G, Swings J, Verstraete W, et al. (2005) Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Appl Environ Microbiol 71, 4307–4317

    Article  PubMed  CAS  Google Scholar 

  • Marques A, Dhont J, Sorgeloos P, Bossier P (2006a) Immunostimulatory nature of β-glucans and baker's yeast in gnotobiotic Artemia challenge tests. Fish Shellfish Immunol 20, 682–692

    Article  PubMed  CAS  Google Scholar 

  • Marques A, Ollevier F, Verstraete W, Sorgeloos P, Bossier P (2006b) Gnotobiotically grown aquatic animals: opportunities to investigate host-microbe interactions. J Appl Microbiol 100, 903–918

    Article  PubMed  CAS  Google Scholar 

  • Marques A, Toi HT, Sorgeloos P, Bossier P (2006c) Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258, 116–126

    Article  Google Scholar 

  • Marques A, Toi HT, Verstraete W, Dhont J, Sorgeloos P, Bossier P (2006d) Use of selected bacteria and yeast to protect gnotobiotic Artemia against different pathogens. J Exp Mar Biol Ecol 334, 20–30

    Article  Google Scholar 

  • Miyawaki A (2002) Green fluorescent protein-like proteins in reef anthozoa animals. Cell Struct Funct 27, 343–347

    Article  PubMed  CAS  Google Scholar 

  • Morohoshi T, Inaba T, Kato N, Kanai K, Ikeda T (2004) Identification of quorum-sensing signal molecules and the LuxRI homologs in fish pathogen Edwardsiella tarda. J Biosci Bioeng 98, 274–281

    PubMed  CAS  Google Scholar 

  • Mulero I, Garcia-Ayala A, Meseguer J, Mulero V (2007) Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish: a minireview. Aquaculture 268, 244–250

    Article  CAS  Google Scholar 

  • Muroga K, Higashi M, Keitoku H (1987) The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schlegeli) at larval and juvenile stages. Aquaculture 65, 79–88

    Article  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1, 27–46

    Article  PubMed  CAS  Google Scholar 

  • Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC (2001) Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67, 2430–2435

    Article  PubMed  CAS  Google Scholar 

  • Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200, 223–248

    Article  Google Scholar 

  • Olafsen JA, Hansen GH (1992) Intact antigen uptake by intestinal epithelial cells of marine fish larvae. J Fish Biol 40, 141–156

    Article  Google Scholar 

  • Peulen O, Deloyer P, Grandfils C, Loret S, Dandrifosse G (2000) Intestinal maturation induced by spermine in young animals. Livestock Prod Sci 66, 109–120

    Article  Google Scholar 

  • Prioult G, Fliss I, Pecquet S (2003) Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice. Clin Diagnost Lab Immunol 10, 787–792

    Article  CAS  Google Scholar 

  • Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M, Gram L (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27, 350–359

    Article  PubMed  CAS  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101, 4596–4601

    Article  PubMed  CAS  Google Scholar 

  • Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433

    Article  PubMed  CAS  Google Scholar 

  • Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci USA 104, 7622–7627

    Article  PubMed  CAS  Google Scholar 

  • Regunathan C, Wesley SG (2004) Control of Vibrio spp. in shrimp hatcheries using the green algae Tetraselmis suecica. Asian Fish Sci 17, 147–157

    Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155, 207–221

    Article  Google Scholar 

  • Rico-Mora R, Voltolina D, Villaescusa-Celaya JA (1998) Biological control of Vibrio alginolyticus in Skeletonema costatum (Bacillariophyceae) cultures. Aquacult Eng 19, 1–6

    Article  Google Scholar 

  • Ringø E (1999) Does Carnobacterium divergens isolated from Atlantic salmon, Salmo salar L., colonize the gut of early developing turbot, Scophthalmus maximus L., larvae? Aquacult Res 30, 229–232

    Article  Google Scholar 

  • Ringø E, Birkbeck TH (1999) Intestinal microflora of fish larvae and fry. Aquacult Res 30, 73–93

    Article  Google Scholar 

  • Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268, 251–264

    Article  Google Scholar 

  • Riquelme C, Araya R, Vergara N, Rojas A, Guaita M, Candia M (1997) Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 154, 17–26

    Article  Google Scholar 

  • Riquelme C, Araya R, Escribano R (2000) Selective incorporation of bacteria by Argopecten purpuratus larvae: implications for the use of probiotics in culturing systems of the Chilean scallop. Aquaculture 181, 25–36

    Article  Google Scholar 

  • Ritchie AJ, Jansson A, Stallberg J, Nilsson P, Lysaght P, Cooley MA (2005) The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-l-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect Immun 73, 1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Phillips WS, Weis VM (2006) Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genom 7, art no 23

    Google Scholar 

  • Ruiz-Ponte C, Samain JF, Sanchez JL, Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 1, 52–59

    Article  PubMed  CAS  Google Scholar 

  • Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103, 10011–10016

    Article  PubMed  CAS  Google Scholar 

  • Sonnenburg JL, Chen CTL, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol 4, 1–14

    Article  CAS  Google Scholar 

  • Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel KF, Gram L (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182, 1–15

    Article  CAS  Google Scholar 

  • Strevett KA, Chen G (2003) Microbial surface thermodynamics and application. Res Microbiol 154, 329–335

    Article  PubMed  CAS  Google Scholar 

  • Strøm E, Ringø E (1993) “Changes in the bacterial composition of early developing cod, Gadus morhua (L.) larvae following inoculation of Lactobacillus plantarum into the water”. In: Physiology and Biochemical Aspects of Fish Development, Walther BT, Fyhn HJ, eds (Bergen, Norway: University of Bergen), pp 226–228

    Google Scholar 

  • Temmerman R, Scheirlinck I, Huys G, Swings J (2003) Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69, 220–226

    Article  PubMed  CAS  Google Scholar 

  • Thomas GL, Bohner CM, Williams HE, Walsh CM, Ladlow M, Welch M, Bryant CE, Spring DR (2006) Immunomodulatory effects of Pseudomonas aeruginosa quorum sensing small molecule probes on mammalian macrophages. Mol Biosyst 2, 132–137

    Article  PubMed  CAS  Google Scholar 

  • Tinh NTN, Phuoc NN, Dierckens K, Sorgeloos P, Bossier P (2006) Gnotobiotically grown rotifer Brachionus plicatilis sensu strictu as a tool for evaluation of microbial functions and nutritional values of different food types. Aquaculture 253, 421–432

    Article  Google Scholar 

  • Tinh NTN, Linh ND, Wood TK, Dierckens K, Sorgeloos P, Bossier P (2007) Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol 103, 194–203

    Article  PubMed  CAS  Google Scholar 

  • Tovar-Ramirez D, Zambonino J, Cahu C, Gatesoupe FJ, Vazquez-Juarez R, Lesel R (2002) Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 204, 113–123

    Article  Google Scholar 

  • Tovar-Ramirez D, Infante JZ, Cahu C, Gatesoupe FJ, Vazquez-Juarez R (2004) Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture 234, 415–427

    Article  Google Scholar 

  • Verschuere L, Rombaut G, Huys G, Dhont J, Sorgeloos P, Verstraete W (1999) Microbial control of the culture of Artemia juveniles through preemptive colonization by selected bacterial strains. Appl Environ Microbiol 65, 2527–2533

    PubMed  CAS  Google Scholar 

  • Verschuere L, Heang H, Criel G, Sorgeloos P, Verstraete W (2000a) Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66, 1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000b) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64, 655–671

    Article  PubMed  CAS  Google Scholar 

  • Villamil L, Figueras A, Planas M, and Novoa B (2003) Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture 219, 43–56

    Article  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2004a) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231, 145–152

    Article  PubMed  CAS  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H, Daya S, Baxter J, Hecht T (2004b) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27, 319–326

    Article  PubMed  CAS  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30, 404–427

    Article  PubMed  CAS  Google Scholar 

  • Wache Y, Auffray F, Gatesoupe FJ, Zambonino J, Gayet V, Labbe L, Quentel C (2006) Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorynchus mykiss, fry. Aquaculture 258, 470–478

    Article  Google Scholar 

  • Wilson A, Horne MT (1986) Detection of A-protein in Aeromonas salmonicida and some effects of temperature on A-layer assembly. Aquaculture 56, 23–27

    Article  CAS  Google Scholar 

  • Yen Chen B, McClane A, Fisher DJ, Rood JI, Gupta P (2005) Construction of an alpha toxin gene knockout mutant of Clostridium perfringens Type A by use of a mobile group II intron. Appl Environ Microbiol 71, 7542–7547

    Article  CAS  Google Scholar 

  • Zherdmant MT, San Miguel L, Serrano J, Donoso E, Miahle E (1997) Estudio y utilización de probióticos en el Ecuador. Panorama Acuícola 2, 28

    Google Scholar 

Download references

Acknowledgments

This study was supported by a doctoral grant for candidates from developing countries (Bijzonder Onderzoeksfonds, grant no. B/03663-011DS502) by Ghent University, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bossier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinh, N.T.N., Dierckens, K., Sorgeloos, P. et al. A Review of the Functionality of Probiotics in the Larviculture Food Chain. Mar Biotechnol 10, 1–12 (2008). https://doi.org/10.1007/s10126-007-9054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9054-9

Keywords

Navigation