Skip to main content

Advertisement

Log in

Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus

  • Review
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

As the main decomposers and recyclers in nature, fungi secrete complex mixtures of extracellular enzymes for degradation of plant biomass, which is essential for mobilization of the organic carbon fixed by the photosynthesis in vegetal cells. Biotechnology can emulate the closed natural biological cycles, using lignocellulosic biomass as a renewable resource and lignocellulolytic fungal enzymes as catalysts to sustainably produce consumer goods. Cellulose and hemicellulose are the major polysaccharides on Earth, and the main enzymes involved in their hydrolytic depolymerization are cellulases (endoglucanases, cellobiohydrolases, and β-glucosidases) and hemicellulases (mainly endoxylanases and β-xylosidases). This work will focus on the enzymes secreted by the filamentous ascomycete Talaromyces amestolkiae and on some of their biotechnological applications. Their excellent hydrolytic activity was demonstrated by the partial degradation of xylans to prebiotic oligosaccharides by the endoxylanase XynN, or by the saccharification of lignocellulosic wastes to monosaccharides (fermentable to ethanol) either by the whole secretomes or by isolated enzymes used as supplements of commercial cocktails. However, apart from their expected hydrolytic activity, some of the β-glycosidases produced by this strain catalyze the transfer of a sugar molecule to specific aglycons by transglycosylation. As the synthesis of customized glycoconjugates is a major goal for biocatalysis, mutant variants of the β-xyloxidase BxTW1 and the ß-glucosidases BGL-1 and BGL-2 were obtained by directed mutagenesis, substantially improving the regioselective production yields of bioactive glycosides since they showed reduced or null hydrolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data of the compounds are not available from the authors.

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A 115:6506–6511

    Article  CAS  Google Scholar 

  • Bhiri F, Chaabouni SE, Limam F, Ghrir R, Marzouki N (2008) Purification and biochemical characterization of extracellular β-glucosidases from the hypercellulolytic Pol6 mutant of Penicillium occitanis. Appl Biochem Biotechnol 149:169–182

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res 2011:787532

  • Cao, LC, Wang, ZJ, Ren, GH, Kong, W, Li, L, Xie, W, Liu, YH (2015) Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol Biofuels 8:202

  • Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433

    Article  Google Scholar 

  • Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11:1784–1794

    Article  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  Google Scholar 

  • De Eugenio LI, Méndez-Líter JA, Nieto-Domínguez M, Alonso L, Gil-Muñoz J, Barriuso J, Prieto A, Martínez MJ (2017) Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach. Biotechnol Biofuels 10:161

  • Demirbas A (Ed) (2010) Biorefinery, in: Biorefineries. For Biomass Upgrading Facilities. Springer-Verlag, London, UK, pp 75–92

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee Y-H, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kuees U, Hibbett DS, Hoffmeister D, Hogberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

  • European Commission, (2015) Closing the loop - an EU action plan for the Circular Economy.  Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM/2015/0614 final

  • European Environmental Agency, (2018). The circular economy and the bioeconomy. EEA Report No. 8/2018

  • Fujii T, Koike H, Sawayama S, Yano S, Inoue H (2015) Draft genome sequence of Talaromyces cellulolyticus strain Y-94, a source of lignocellulosic biomass-degrading. Enzymes Microbiol Resour Announc 3(1): e00014–515

  • Geissdoerfer M, Savaget P, Bocken N, Hultink E (2017) The circular economy: a new sustainability paradigm? J Clean Prod 143:757–768

    Article  Google Scholar 

  • Gil-Muñoz J (2015) Estudio de las β-glucosidasas del complejo celulítico de Talaromyces amestolkiae: caracterización y aplicaciones biotecnológicas. Doctoral Thesis, Complutense University, Madrid. Available from: http://eprints.ucm.es/30175/1/T36063.pdf

  • Glass NL, Schmoll M, Cate JHD, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    Article  CAS  Google Scholar 

  • Goyari S, Devi SH, Bengyella L, Khan M, Sharma CK, Kalita MC, Talukdar NC (2015) Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secret. J Appl Microbiol 119:88–98

    Article  CAS  Google Scholar 

  • Hayes BK, Varki A (1993) Biosynthesis of oligosaccharides in intact golgi preparations from rat liver Analysis of N-linked glycans labeled by UDP-[6-H-3]Galactose, CMP-[9-H-3]N-acetylneuraminic acid, and [Acetyl-H-3]acetyl-coenzyme A. J Biol Chem 268:16155–16169

    Article  CAS  Google Scholar 

  • Heins RA, Cheng X, Nath S, Deng K, Bowen BP, Chivian DC, Datta S, Friedland GD, D’Haeseleer P, Wu D, Tran-Gyamfi M, Scullin CS, Singh S, Shi W, Hamilton MG, Bendall ML, Sczyrba A, Thompson J, Feldman T, Guenther JM, Gladden JM, Cheng JF, Adams PD, Rubin EM, Simmons BA, Sale KL, Northen TR, Deutsch S (2014) Phylogenomically guided identification of industrially relevant GH1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry. ACS Chem Biol 9:2082–2091

    Article  CAS  Google Scholar 

  • Hermida C, Corrales G, Cañada FJ, Aragón JJ, Fernández-Mayoralas A (2007) Optimizing the enzymatic synthesis of β-D-galactopyranosyl-D-xyloses for their use in the evaluation of lactase activity in vivo. Bioorg Med Chem 15:4836–4840

  • Hori C, Igarashi K, Katayama A, Samejima M (2011) Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321:14–23

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial exo-xylanases: a mini review. Appl Biochem Biotechnol 174:81–92

    Article  CAS  Google Scholar 

  • Knob A, Terrasan C, Carmona E (2010) beta-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y et al (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68

    Article  CAS  Google Scholar 

  • Li CX, Zhao S, Zhang T, Xian L, Liao LS, Liu JL, Feng JX (2017) Genome sequencing and analysis of Talaromyces pinophilus provide insights into biotechnological applications. Sci Rep 7:490

  • Liu G, Qin Y, Li Z, Qu Y (2013) Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology. Biofuels 4:523–534

    Article  CAS  Google Scholar 

  • Lombard V, GolacondaRamulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WHV, Isak S (2002) Microbial cellulose utilization : fundamentals and biotechnology microbial cellulose utilization. Microbiol Mol Biol Rev 66:506–577

  • Martínez AT (2016) How to break down crystalline cellulose. Science 352:1050–1051

    Article  Google Scholar 

  • Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Article  Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Del Río JC (2005) Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, De Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

  • Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ (2021) Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. Bioresour Technol 324:124623

  • Méndez-Líter JA, De Eugenio LI, Prieto A, Martínez MJ (2018) The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: a versatile catalyst for biofuel production from plant and algal biomass. Biotechnol Biofuels 11:123

  • Méndez-Líter JA, Gil-Muñoz J, Nieto-Domínguez M, Barriuso J, De Eugenio LI, Martínez MJ (2017) A novel, highly efficient β-glucosidase with a cellulose-binding domain: Characterization and properties of native and recombinant proteins. Biotechnol Biofuels 10(1):256

  • Méndez-Líter JA, Nieto-Domínguez M, Fernández De Toro B, González-Santana A, Prieto A, Asensio JL, Cañada FJ, De Eugenio LI, Martínez MJ (2020) A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for phenolic compounds glycosylation. Microb Cell Fact 19:127

  • Méndez-Líter JA, Tundidor I, Nieto-Domínguez M, Fernández de Toro B, González Santana A, de Eugenio LI, Prieto A, Asensio JL, Cañada FJ, Sánchez C, Martínez MJ (2019) Transglycosylation products generated by Talaromyces amestolkiae GH3 β - glucosidases : effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb Cell Fact 18:97

  • Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  CAS  Google Scholar 

  • Murguiondo C, Mestre A, Méndez-Líter JA, Nieto-Domínguez M, de Eugenio LI, Molina-Gutiérrez M, Martínez MJ, Prieto A (2021) Enzymatic glycosylation of bioactive acceptors catalyzed by an immobilized fungal β-xylosidase and its multi-glycoligase variant. Int J Biol Macromol 167:245–254

    Article  CAS  Google Scholar 

  • Nieto-Domínguez M, de Eugenio LI, Barriuso J, Prieto A, de Toro BF, Canales-Mayordomo, A, Martínez MJ (2015) Novel pH-stable glycoside hydrolase family 3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Appl Environ Microbiol 81:6380–6392

  • Nieto-Domínguez M, de Eugenio LI, Peñalver P, Belmonte-Reche E, Morales JC, Poveda A, Jiménez-Barbero J, Prieto A, Plou FJ, Martínez MJ (2017a) Enzymatic synthesis of a novel neuroprotective hydroxytyrosyl glycoside. J Agric Food Chem 65:10526–10533

    Article  Google Scholar 

  • Nieto-Domínguez M, de Eugenio LI, York-Durán MJ, Rodríguez-Colinas B, Plou FJ, Chenoll E, Pardo E, Codoñer F, Jesús Martínez M (2017b) Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem 232:105–113

  • Nieto-Domínguez M, Fernández de Toro B, de Eugenio LI, Santana AG, Bejarano-Muñoz L, Armstrong Z, Antonio Méndez-Líter J, Luis Asensio J, Prieto A, Withers SG, Javier Cañada F, Jesús Martínez M (2020) Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat Commun 11(1):4864. https://doi.org/10.1038/s41467-020-18667-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Domínguez M, Martínez-Fernández JA, Fernández De Toro B, Méndez-Líter JA, Cañada FJ, Prieto A, De Eugenio LI, Martínez MJ (2019a) Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microb Cell Fact 18:174

  • Nieto-Domínguez M, Martínez MJ, Cañada FJ, Gonzalez-Santana A, Prieto A, Asensio JL (2019b) Procedimiento para la obtención de glicoconjugados P201930082; PCT/ES2020/070079

  • Nieto-Domínguez M, Prieto A, Fernández de Toro B, Cañada FJ, Barriuso J, Armstrong Z, Withers SG, de Eugenio LI, Martínez MJ (2016) Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-D-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae. Microb Cell Fact 15:171

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  CAS  Google Scholar 

  • Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 22:31–37

    Article  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P (2015) Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42:553–565

  • Ramani G, Meera B, Vanitha C, Rao M, Gunasekaran P (2012) Production, purification, and characterization of a beta-glucosidase of Penicillium funiculosum NCL1. Appl Biochem Biotechnol 167:959–972

    Article  CAS  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187

    Article  CAS  Google Scholar 

  • Salvachúa D, Prieto A, Vaquero ME, Martínez ÁT, Martínez MJ (2013) Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresour Technol 131:218–225

    Article  Google Scholar 

  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183

  • Saumonneau A, Champion E, Peltier-Pain P, Molnar-Gabor D, Hendrickx J, Tran V, Hederos M, Dekany G, Tellier C (2016) Design of an α-L-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology 26:261–269

    CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  CAS  Google Scholar 

  • Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3:612–631

    Article  Google Scholar 

  • Thapa S, Mishra J, Arora N, Mishra P, Li H, O′Hair J, Bhatti S, Zhou S (2020) Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol 19:621–648

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

  • Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: A comprehensive review. Bioresour Technol 299:122585

  • Vaishnav N, Singh A, Adsul M, Dixit P, Sandhu SK, Mathur A, Puri SK, Singhania RR (2018) Penicillium: the next emerging champion for cellulase production. Bioresour Technol Reports 2:131–140

  • Yang Y, Yang J, Liu J, Wang R, Liu L, Wang F, Yuan H (2018) The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis. Bioresour Technol 257:54–61

Download references

Acknowledgements

The authors thank the Gas Chromatography and Proteomics and Genomics Services of the Margarita Salas Biological Research Center (CIB-CSIC) for their help, and the collaborators who have made this work possible. In addition, we are grateful to J. Gil-Muñoz for his contribution at the initial stages of this work. The authors thank the SusPlast-CSIC Interdisciplinary Platform for their support.

Funding

This work was funded by projects GLYSUS RTI2018-093683-B-I00 (MICIU/AEI/FEDER) and RETOPROSOST-2-CM, S2018/EMT-4459 (Comunidad de Madrid). Preliminary investigations were funded by MINECO or Comunidad de Madrid in collaboration with Abengoa Research and Bioenergy.

Author information

Authors and Affiliations

Authors

Contributions

A.P and M.J.M. conceived and designed the studies. L.E, M.N., J.M, CM. L.B. studied the enzymes and acquired the data. All authors contributed to draft the manuscript and A.P. and M.J.M substantially reviewed it.

Corresponding authors

Correspondence to Alicia Prieto or María Jesús Martínez.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors consent for their participation in the manuscript.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, A., de Eugenio, L., Méndez-Líter, J.A. et al. Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. Int Microbiol 24, 545–558 (2021). https://doi.org/10.1007/s10123-021-00202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-021-00202-z

Keywords

Navigation