Skip to main content
Log in

Recent Progress in Fabrication and Structural Design of Thermal Conductive Polymer Composites

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In recent years, the demand direction for electronic equipment has expanded into embedded and miniaturized devices. The heat radiation problem has become one of the most significant factors for hindering the development of electronic devices. Since heat radiation material is one of the important components in electronic devices, the demand for enhancing thermal conductivity is also increasingly urgent. Research on thermal conductive polymer composites has become a major direction for developing functional composites. This work reviewed the recent progress in the fabrication of thermal conductive polymer composites. Five different structures are presented, including the using of single fillers, hybrid fillers, double threshold percolation structure, segregated structure and other complex multiphase structures. Specifically, the preparation of high-performance thermal conductive polymer composites was introduced through the combination of various thermal conductive fillers. Finally, the development direction of high thermal conductive polymer composites was briefly explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leung, S. N. Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos. B Eng. 2018, 150, 78–92.

    Article  CAS  Google Scholar 

  2. Xu, H. J.; Xing, Z. B.; Wang, F. Q.; Cheng, Z. M. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 2019, 195, 462–483.

    Article  CAS  Google Scholar 

  3. Qian, X.; Zhou, J. W.; Zhou, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 9, 1188–1202.

    Article  Google Scholar 

  4. Mehra, N; Mu, L. W. Zhu, J. H. Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Compos. Sci. Technol. 2017, 148, 97–105.

    Article  CAS  Google Scholar 

  5. Mehra N, Mu, L. W.; Ji, T.; Yang, X. T.; Kong, J.; Gu, J. W.; Zhu, J. H. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018, 12, 92–130.

    Article  Google Scholar 

  6. Huang, X. Y.; Jiang, P.; Tanaka, T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. M. 2011, 27, 8–16.

    Article  Google Scholar 

  7. Li, M.; Liu, B. W.; Liu, Z J.; Xiao, Y. M.; Guo, H. M.; An, Z. H.; Wang, L. D.; James, T. D. Reducing heat Conduction enhances the photothermal efficiency of upcycled adsorbents. Adv. Funct. Mater. 2023, 33, 2209987.

    Article  CAS  Google Scholar 

  8. Chen, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 2021, 3, 555–569.

    Article  CAS  Google Scholar 

  9. Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. M. Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol. 2020, 193, 108134.

    Article  CAS  Google Scholar 

  10. Kausar, A. Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review. Polym. Plast. Techol. Mater. 2020, 59, 895.

    CAS  Google Scholar 

  11. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  12. Gu, J.; Ruan, K. P. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 2021, 13, 110.

    Article  CAS  Google Scholar 

  13. Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605.

    Article  Google Scholar 

  14. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phy. Rev. B 1998, 57, 14958.

    Article  CAS  Google Scholar 

  15. Bi, D. M.; Chen, H. X.; Ye, T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics 2012, 52, 403–409.

    Article  CAS  Google Scholar 

  16. Ruan, K. P.; Shi, X. T.; Guo, Y. Q.; Gu, J. M. Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos. Commun. 2020, 22, 100518.

    Article  Google Scholar 

  17. Tan, X.; Yuan, Q. L. Qiu, M. T.; Yu, N. Jiang, C. T. Lin, J. H.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

    Article  CAS  Google Scholar 

  18. Wang, Z. Y.; Sun, X.; Wang, Y.; Liu, J. D.; Zhang, C.; Zhao, Z. B.; Du, X. Y. A high-performance thermally conductive and electrically insulating silver@ siloxane/graphene/epoxy composites at low filler content: Fabrication, mechanism study of insulation and thermal conductivity enhancement. Ceram. Int. 2023, 49, 2871–2880.

    Article  CAS  Google Scholar 

  19. Qi, W.; Liu, M.; Wu, J. L.; Xie, Q.; Chen, L.; Yang, X.; Shen, B. Y.; Bian, X. M.; Song, W. L. Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers. Compos. Part. B-Eng. 2022, 232, 109613.

    Article  CAS  Google Scholar 

  20. Xie, B.; Zhu, Y.W.; Marwat, M. A.; Zhang, S. J.; Zhang, L.; Zhang, H. B. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J. Mater. Chem. A 2018, 6, 20356–20364.

    Article  CAS  Google Scholar 

  21. Li, C.; Zeng, X. L.; Tan, L. Y.; Yao, Y. M.; Zhu, D. L.; Sun, R.; Xu, J. B.; Wong, C. P. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer. Chem. Eng. J. 2019, 368, 79–87.

    Article  CAS  Google Scholar 

  22. An, L. L.; Yu, Y. L.; Cai, Q. R.; Mateti, S.; Li, L. H.; Chen, Y. I. Hexagonal boron nitride nanosheets: preparation, heat transport property and application as thermally conductive fillers. Prog. Mater. Sci. 2023, 138, 101154.

    Article  CAS  Google Scholar 

  23. Liu, M. J.; Chiang, S. W.; Chu, X. D.; Li, J.; Gan, L.; He, Y. B.; Li, B. H.; Kang, F. Y.; Du, H. D. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram. Int. 2020, 46, 20810–20818.

    Article  CAS  Google Scholar 

  24. Maxwell, J. C. A treatise on electricity and magnetism, Clarendon Press, Oxford, 1873, p. 478.

    Google Scholar 

  25. Bruggemann, D. A. G. Dielectric constant and conductivity of mixtures of isotropic material. Ann. Phys. 1935, 24, 636–664.

    Google Scholar 

  26. Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712.

    Article  CAS  Google Scholar 

  27. Zhang, G. Q.; Xia, X. P.; Wang, H.; Tao, Y.; Tao, G. L.; Tu, S. T.; Wu, H. P. A percolation model of thermal conductivity for filled polymer composites. J. Compos. Mater. 2010, 44, 963–970.

    Article  CAS  Google Scholar 

  28. Guo, Y. Q.; Ruan, K. P.; Gu, J. W. Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 2021, 20, 100449.

    Article  CAS  Google Scholar 

  29. Li, A.; Zhang, C.; Zhang, Y. F. Thermal conductivity of graphene-polymer composites, mechanisms, properties, and applications. Polymers 2017, 9, 437.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen, Z. M.; Feng, J. C. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticle. ACS Appl. Mater. Interfaces 2018, 10, 24193–24200.

    Article  CAS  PubMed  Google Scholar 

  31. Krupa, I.; Cecen, V.; Boudenne, A.; Prokes, J.; Novak, I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des. 2013, 51, 620–628.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Chen, Q. M.; Liu, C.; Li, S.; Wu, W. Highly enhanced thermal conductivity of TPU composites with segregated network constructed by the in-situ reduction of copper. J. Alloy. Compd. 2023, 941, 168801.

    Article  CAS  Google Scholar 

  33. Chen, W.; Wang, Z. F.; Zhi, C. Y.; Zhang, W. J. High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos. Sci. Technol. 2016, 130, 63–69.

    Article  CAS  Google Scholar 

  34. Ota, S.; Harada, M. Thermal conductivity enhancement of liquid crystalline epoxy/MgO composites by formation of highly ordered network structure. J. Appl. Polym. Sci. 2020, 138, 50367.

    Article  Google Scholar 

  35. Wondu, E.; Lule, Z.; Kim, J. Thermal conductivity and mechanical properties of thermoplastic polyurethane-/silane-modified Al2O3 composite fabricated via melt compounding. Polymess 2019, 11, 1103.

    Google Scholar 

  36. Yeo, H.; Islam, A. M.; You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol. 2017, 141, 99–105.

    Article  CAS  Google Scholar 

  37. Guo, L. C.; Zhang, Z. Y.; Kang, R. Y.; Chen, Y. P.; Hou, X.; Wu, Y. M.; Wang, M. J.; Wang, B.; Cui, J. F.; Jiang, N.; Lin, C. T.; Yu, J. H. Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO. RSC Adv. 2018, 8, 12337–12343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan, Y.; Li, Z. T.; Cao, L.; Tang, B.; Zhang, S. R. Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity. Ceram. Int. 2019, 45, 16569–16576.

    Article  CAS  Google Scholar 

  39. Lee, W.; Kim, J. Highly thermal conductive and electrical insulating epoxy composites with a three-dimensional filler network by sintering silver nanowires on aluminum nitride surface. Polymers 2021, 13, 694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Z. Y.; Wu, D.; Yang, H.; Qu, H. C.; Yao, C.; Liu, F. J.; Yu, P.; Yao, J. L.; You, F.; Jiang, X. L. Remarkable enhancement in thermal performance of polypropylene carbonate by using exfoliated boron nitride nanosheets. Chem. Eng. J. 2022, 450, 138247.

    Article  CAS  Google Scholar 

  41. Liu, B. C.; Li, Y. B.; Fei, T.; Han, S.; Xia, C. B.; Shan, Z. H.; Jiang, J. L. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem. Eng. J. 2020, 385, 123829.

    Article  CAS  Google Scholar 

  42. Zhang, X. W.; Zhang, B.; Sun, M. M.; Li, J. H.; Liu, C. Z. Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes. J. Mater. Sci. Mater. Electron. 2022, 33, 1577–1588.

    Article  CAS  Google Scholar 

  43. Lin, Y.; Lang, F.; Zeng, D.; You, Y. L.; Li, D. X.; Xiao, C. G. Effects of modified graphene on property optimization in thermal conductive composites based on PPS/PA6 blend. Soft Mater. 2021, 19, 457–467.

    Article  CAS  Google Scholar 

  44. Wang, Y. Y.; Zhang, X.; Ding, X.; Li, Y.; Zhang, P.; Shu, M. T.; Zhang, Q.; Gong, Y.; Zheng, K.; Wu, B.; Tian, X. Y. Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos. Sci. Technol. 2021, 205, 108693.

    Article  CAS  Google Scholar 

  45. Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550.

    Article  CAS  Google Scholar 

  46. Zhan, C.; Cui, W. Z.; Li, L. J.; Quan, X. J.; Zhang, Y. Q.; Xiao, F. Dual-Aligned carbon nanofiber scaffolds as heat conduction path to enhance thermal conductivity of polymer composites. Compos. Sci. Technol. 2023, 231, 109823.

    Article  CAS  Google Scholar 

  47. Wang, X. G.; Zhang, C. Y.; Wang, K.; Huang, Y. Q.; Chen, Z. F. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde. J. Colloid Interface Sci. 2021, 582, 30–40.

    Article  CAS  PubMed  Google Scholar 

  48. Li, C. L.; Guo, H. L.; Tian, X.; Tian, X. G. Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock. J. Therm. Stresses 2017, 40, 389–401.

    Article  Google Scholar 

  49. Guo, Y. Q.; Yang, X. T.; Ruan, K. P.; Kong, J.; Dong, M. Y.; Zhang, J. X.; Gu, J. W.; Guo, Z. H. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473.

    Article  CAS  PubMed  Google Scholar 

  50. Nayak, S. K.; Mohanty, S.; Nayak, S. K. Silver (Ag) nanoparticle-decorated expanded graphite (EG) epoxy composite: evaluating thermal and electrical properties. J. Mater. Sci.-Mater. Electron. 2019, 30, 20574–20587.

    Article  CAS  Google Scholar 

  51. Wang, Y.; Wu, W.; Drummer, D.; Liu, C.; Shen, W. T.; Tomiak, F.; Schneider, K.; Liu, X. R.; Chen, Q. M. Highly thermally conductive polybenzoxazine composites based on boron nitride flakes deposited with copper particles. Mater. Des. 2020, 191, 108698.

    Article  CAS  Google Scholar 

  52. Liu, C.; Wu, W.; Drummer, D.; Shen, W. T.; Wang, Y.; Schneider, K.; Tomiak, F. ZnO nanowire-decorated Al2O3 hybrids for improving the thermal conductivity of polymer composites. J. Mater. Chem. C 2020, 8, 5380–5388.

    Article  CAS  Google Scholar 

  53. Lule, Z.; Kim, J. Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride. Compos. Part A: Appl. Sci. Manuf. 2019, 124, 105506.

    Article  CAS  Google Scholar 

  54. Liu, Y. C.; Lu, M. P.; Wu, K.; Yao, S.; Du, X. X.; Chen, G. K.; Zhang, Q.; Liang, L. Y.; Lu, M. G. Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos. Sci. Technol. 2019, 174, 1–10.

    Article  Google Scholar 

  55. Niu, H. Y.; Guo, H. C.; Ren, Y. J.; Ren, L. C.; Lv, R. C.; Kang, L.; Bashir, A.; Bai, S. L. Spherical aggregated BN /AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow. Chem. Eng. J. 2022, 430, 133155.

    Article  CAS  Google Scholar 

  56. Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.

    Article  Google Scholar 

  57. Jiang, X. L.; Ma, P. F.; Zhou, C.; Zhu, W. W.; You, F.; Yao, C.; Liu, F. J. Simultaneously enhancing the thermal conductivity and dielectric constant of BN/CF hybrid filled polypropylene/polystyrene composites via in situ reactive processing. Polym. Compos. 2019, 41, 1234–1241.

    Article  Google Scholar 

  58. Xie, X.; Yang, D. Achieving high thermal conductivity and satisfactory insulating properties of elastomer composites by self-assembling BN@ GO hybrids. Polymers 2023, 15, 523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, H. C.; Zhou, W. Q.; Liu, Q.; Cai, X.; Qu, Z. H.; Li, P.; Hu, D.; Jia, X. L. High pressure homogenization of graphene and carbon nanotube for thermal conductive polyethylene composite with a low filler content. J. Appl. Polym. Sci. 2021, 139, 51838.

    Article  Google Scholar 

  60. Jiang, Z. L.; Liu, X.; Xu, Q. F.; Zhou, C. Y.; Shang, Y. S.; Zhang, H. B. Thermal conductive segregated multi-scale network constructed by ball-milling and in-situ polymerization in PEEK/MWCNT/graphite composite. Compos. Commun. 2022, 29, 101035.

    Article  Google Scholar 

  61. Song, J. N.; Zhang, Y. Vertically aligned silicon carbide nanowires/reduced graphene oxide networks for enhancing the thermal conductivity of silicone rubber composites. Compos. Pt. A Appl. Sci. Manuf. 2020, 133, 105873.

    Article  CAS  Google Scholar 

  62. Ouyang, Y. G.; Bai, L. Y.; Tian, H. F.; Li, X. F.; Yuan, F. L. Recent progress of thermal conductive ploymer composites, Al2O3 fillers, properties and applications. Compos. Pt. A Appl. Sci. Manuf. 2022, 152, 106685.

    Article  CAS  Google Scholar 

  63. Su, F.; Zhang, L.; Li, C. Z. High-thermal-conduction and low-cost composite originated from the tight packing structure of boron nitride sheets and binary alumina balls. Polym. Compos. 2021, 42, 3562–3571.

    Article  CAS  Google Scholar 

  64. Kozlovskiy, A. L.; Zdorovets, M. V.; Uglov, V. V. Study of changes in optical and heat-conducting properties of AlN ceramics under irradiation with Kr15+ and Xe22+ heavy ion. Nanomaterials2020, 10, 2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Du, J. J.; Dai, W. J.; Kou, H. J.; Wu, P. F.; Xing, W. L.; Zhang, Y. Z.; Zhang, C. AlN coatings with high thermal conductivity and excellent electrical properties for thermal management devices. Ceram. Int. 2023, 49, 16740–16752.

    Article  CAS  Google Scholar 

  66. Akkoyun, S.; Akkoyun, M. Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler. Cell. Polym. 2021, 40, 87.

    Article  CAS  Google Scholar 

  67. Lee, S.; Park, D.; Kim, J. 3D-printed surface-modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength. Polym. Adv. Technol. 2022, 33, 1291–1297.

    Article  CAS  Google Scholar 

  68. Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

    Article  CAS  PubMed  Google Scholar 

  69. Jung, D. W.; Kim, J. M.; Yoon, H. W.; Nam, K. M.; Kwon, Y. E.; Jeong, S.; Baek, Y. H.; Choi, Y. S.; Chang, S. J.; Yi, G. R.; Cha, J. Y.; Lee, G. Solution- processable thermally conductive polymer composite adhesives of benzyl-alcohol-modified boron nitride two-dimensional nanoplates. Chem. Eng. J. 2019, 361, 783–791.

    Article  CAS  Google Scholar 

  70. Su, X.; Wang, R. Y.; Li, X. F.; Araby, S.; Kuan, H. C.; Naeem, M.; Ma, J. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Mater. Sci. 2022, 4, 185–204.

    Article  CAS  Google Scholar 

  71. Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28.

    Article  CAS  Google Scholar 

  72. Che, J. W.; Cagin, T.; Goddard III, W. A. Thermal conductivity of carbon nanotubes. Nanotechnology 2000, 11, 65.

    Article  CAS  Google Scholar 

  73. Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36, 914–944.

    Article  CAS  Google Scholar 

  74. Thostenson, E. T.; Chou, T. W. Prceessigg-structure-multifunctional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029.

    Article  CAS  Google Scholar 

  75. Yuan, S. Q.; Bai, J. M.; Chua, C. K.; Wei, J.; Zhou, K. Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos. Part A: Appl. Sci. Manuf. 2016, 90, 699–710.

    Article  CAS  Google Scholar 

  76. Wu, N.; Che, S.; Li, H. W.; Wang, C. N.; Tian, X. J.; Li, Y. F. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications. New Carbon Mater. 2021, 36, 911–926.

    Article  CAS  Google Scholar 

  77. Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms Mater. Sci. Eng. R-Rep. 2020, 142, 100580.

    Article  Google Scholar 

  78. Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 1.

    Article  Google Scholar 

  79. Wang, F. Z.; Zhang, S.; Li, X. Q.; Wang, W.; Shi, M. X.; Huang, Z. X.; Li, C. S. Construction of functionalized graphene nanoplatelets/SiC nanowires hybrid skeleton for epoxy composites with enhanced thermal conductivity and thermomechanical properties. Mater. Res. Bull. 2023, 162, 112189.

    Article  CAS  Google Scholar 

  80. Eksik, O.; Bartolucci, S. F.; Gupta, T.; Fard, H.; Tasciuc, T. B.; Koratkar, N. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon. 2016, 101, 239–244.

    Article  CAS  Google Scholar 

  81. Tao, J. R.; Luo, C. L.; Huang, M. L.; Weng, Y. X.; Wang, M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Compos. Part A: Appl. Sci. Manuf. 2023, 164, 107304.

    Article  CAS  Google Scholar 

  82. Luo, F. B.; Yang, S. G.; Yan, P. P.; Li, H. Z.; Huang, B. Q.; Qian, Q. R.; Chen, Q. H. Orientation behavior and thermal conductivity of liquid crystal polymer composites based on three-dimensional printing. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107059.

    Article  CAS  Google Scholar 

  83. Min, S. B.; Kim, M.; Hyun, K.; Ahn, C. W.; Kim, C. B. Thermally conductive 2D filler orientation control in polymer using thermophoresis. Polym. Test. 2023, 117, 107838.

    Article  CAS  Google Scholar 

  84. Yu, S.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: oriented conductive fillers for high k nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

    Article  CAS  PubMed  Google Scholar 

  85. Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

    Article  Google Scholar 

  86. Jiao, D. J.; Song, N.; Ding, P.; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Compos. Commun. 2022, 31, 101101.

    Article  Google Scholar 

  87. Mao, L.; Han, J. B.; Zhao, D.; Song, N.; Shi, L. Y.; Wane, J. H. Particle packing theory guided thermal conductive polymer preparation and related properties. ACS Appl. Mater. Interfaces 2018, 10, 33556–33563.

    Article  CAS  PubMed  Google Scholar 

  88. Ma, M.; Chu, Q. D.; Lin, H.; Xu, L.; He, H. W.; Shi, Y. Q.; Chen, S.; Wang, X. Highly anisotropic thermal conductivity and electrical insulation of nanofibrillated cellulose/Al2O3@rGO composite films: effect of the particle size. Nanotechnology 2022, 333, 135711.

    Article  Google Scholar 

  89. Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594.

    Article  CAS  Google Scholar 

  90. Hao, M.; Qian, X.; Zhang, Y. G.; Yang, J. M.; Li, C. J.; Gong, H. T.; Wang, X. F.; Wang, P. P.; Liu, L.; Huang, Y. D. Thermal conductivity enhancement of carbon fiber/epoxy composites via constructing three-dimensionally aligned hybrid thermal conductive structures on fiber surfaces. Compos. Sci. Technol. 2023, 231, 109800.

    Article  CAS  Google Scholar 

  91. Wu, W. F.; Ren, T. L.; Liu, X. Q.; Davis, R.; Huai, K.; Cui, X.; Wei, H. X.; Hu, J. J.; Xia, Y. M.; Huang, S. H.; Qiang, Z.; Fu, K.; Zhang, J. M.; Chen, Y. W. Creating thermal conductive pathways in polymer matrix by directional assembly of synergistic fillers assisted by electric fields. Compos. Commun. 2022, 35, 101309.

    Article  Google Scholar 

  92. Wen, Y. F.; Chen, C.; Ye, Y. S.; Xue, Z. G.; Liu, H. Y.; Zhou, X. P.; Zhang, Y.; Li, D. Q.; Xie, X. L.; Mai, Y. W. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials—a review. Adv. Mater. 2022, 34, 2201023.

    Article  CAS  Google Scholar 

  93. Hu, Z. F.; Zhao, T. T.; Dong, L. J.; Zhang, Y. Polyhedral oligosilsesquioxane-modified alumina/aluminum nitride/silicone rubber composites to enhance dielectric properties and thermal conductivity. J. Electron. Mater. 2022, 51, 2308–2315.

    Article  CAS  Google Scholar 

  94. Lule, Z. C.; Kim, J. Organic-inorganic hybrid filler for improved thermal conductivity and anti-dripping performance of polybutylene succinate composite. J. Clean Prod. 2022, 340, 130781.

    Article  CAS  Google Scholar 

  95. Yu, A. P.; Ramesh, P.; Sun, X. B.; Bekyarova, E.; Itkis, M. E.; Haddon, R. C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 2008, 20, 4740–4744.

    Article  CAS  Google Scholar 

  96. Niu, N. T.; Zhang, Y.; Xiao, G.; He, X. H.; Yao, Y. G. Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes. Rare Metals 2023, 42, 1283–1293.

    Article  CAS  Google Scholar 

  97. Zhang, X.; Song, J. A.; Meng, J. J.; Zhang, K. Anisotropic PDMS/alumina/carbon fiber composites with a high thermal conductivity and an electromagnetic interference shielding performance. Materials 2022, 15, 8078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kashfipour, M. A.; Guo, M. L.; Mu, L. W.; Mehra, N.; Cheng, Z. H.; Olivio, J.; Zhu, S. S.; Maia, J. M.; Zhu, J. H. Carbon nanofiber reinforced co-continuous HDPE/PMMA composites: exploring the role of viscosity ratio on filler distribution and electrical/thermal properties. Compos. Sci. Technol. 2019, 184, 107859.

    Article  CAS  Google Scholar 

  99. Huang, Y.; Ellingford, C.; Bowen, C.; McNally, T.; Wu, D. M.; Wan, C. Y. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. Int. Mater. Rev. 2020, 65, 129–163.

    Article  CAS  Google Scholar 

  100. Wu, W. J.; Liu, H. W.; Wang, Z. Y.; Lv, P.; Hu, E. T.; Zheng, J. J.; Yu, K. H.; Wei, W. Formation of thermal conductive network in boron nitride/polyvinyl alcohol by ice-templated self-assembly. Ceram. Int. 2021, 47, 33926–33929.

    Article  CAS  Google Scholar 

  101. Chen, X. L.; Lim, J. S. K.; Yan, W. L.; Guo, F.; Liang, Y. N.; Chen, H.; Lambourne, A.; Hu, X. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996.

    Article  CAS  PubMed  Google Scholar 

  102. Yang, W.; Wang, Y. F.; Li, Y.; Gao, C.; Tian, X. J.; Wu, N.; Geng, Z. S.; Che, S.; Yang, F.; Li, Y. F. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 2021, 224, 109168.

    Article  CAS  Google Scholar 

  103. Xu, X. W.; Hu, R. C.; Chen, M. Y.; Dong, J. F.; Xiao, B.; Wang, Q.; Wang, H. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 2020, 397, 125447.

    Article  CAS  Google Scholar 

  104. Fu, H. B.; Huang, Y.; Liu, Y.; Li, F.; Gai, Z. P.; Jiang, Y.; Gao, X. L.; Zhuang, J.; Sun, J. Y.; Xu, H.; Wu, D. M. Enhanced thermal conduction of hybrid filler/polydimethylsiloxane composites via a continuous spatial confining process. Compos. Sci. Technol. 2022, 226, 109536.

    Article  CAS  Google Scholar 

  105. Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265–271.

    Article  CAS  Google Scholar 

  106. Li, T. T.; Wang, Y. X.; Wang, Y. T.; Sun, F.; Xu, J. W.; Lou, C. W.; Lin, J. H. Preparation of flexible, highly conductive polymer composite films based on double percolation structures and synergistic dispersion effect. Polym. Compos. 2021, 42, 5159–5167.

    Article  CAS  Google Scholar 

  107. Cao, J. P.; Zhao, X. D.; You, F.; Yu, H. Z.; Hu, G. H.; Dang, Z. M. High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos. Sci. Technol. 2013, 89, 142–148.

    Article  CAS  Google Scholar 

  108. Yang, L.; Zheng, Y.; Hou, M.; Chen, W. Y.; Wang, Z. Q. Constructing of highly ordered 3D network of carbon nanotube inside polymer matrix and the improvements in properties of the composites. Am. J. Polym. Sci. Technol. 2019, 5, 9–15.

    Article  Google Scholar 

  109. Li, M. D.; Wang, Y. X.; Wang, Y. T.; Sun, F.; Xu, J. W.; Lou, C. W.; Lin, J. H. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat. Commun. 2022, 13, 5849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, J. Q.; Hu, L.; Li, W. H.; Ouyang, Y. G.; Bai, L. Y. Development and perspectives of thermal conductive polymer composites. Nanomaterials 2022, 12, 3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Graduate Innovation Fund of Wuhan Institute of Technology, Natural Science Foundation of Hubei Province (No. 2022CFB630) and Open Fund of Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education (Hubei University) (No. 202105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng You.

Ethics declarations

The authors declare no interest conflict.

Additional information

Biography

Feng You received his Ph.D. degree from University of Science and Technology Beijing in 2014. He was appointed as an Associate Professor at Wuhan Institute of Technology in 2014. His research interest is thermal conductive polymer composites and acoustic materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YK., Shi, ZX., Dong, S. et al. Recent Progress in Fabrication and Structural Design of Thermal Conductive Polymer Composites. Chin J Polym Sci 42, 277–291 (2024). https://doi.org/10.1007/s10118-023-3057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3057-5

Keywords

Navigation