Skip to main content
Log in

Random Terpolymer Based on Simple Siloxane-functionalized Thiophene Unit Enabling High-performance Non-fullerene Organic Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Incorporation of siloxane-functionalized units into polymers backbone has proven to be an efficient strategy to improve photovoltaic performance. In this work, a low-cost siloxane-containing unit was developed to construct a series of terpolymers, and the effects of siloxane on the polymer performance were systematically studied. Different contents of thiophene containing siloxane-functionalized side chain were introduced into PM6 to obtain a series of polymers (PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30). The siloxane-functionalized side chains in polymers have only a slight effect on the absorption behavior and frontier molecular orbitals. However, when the siloxane content increased, the terpolymers’ aggregation property decreased and the temperature-dependency increased, leading to improved donor-acceptor compatibility. The power conversion efficiency (PCE) based on PM6:Y6, PM6-SiO-20:Y6 and PM6-SiO-30:Y6 devices was 15.64%, 16.03% and 15.82%, respectively. In comparison, the active layer based on PM6-SiO-10:Y6 exhibits the most appropriate phase separation morphology, resulting in effective exciton dissociation, more balanced hole-electron transport and less recombination. Consequently, the highest PCE of 16.69% with an outstanding short-circuit current density of 26.96 mA·cm−2 was obtained, which are one of the highest values for siloxane-functionalized polymer-based devices. This work demonstrates that finely controlling the content of siloxane-functionalized thiophene is beneficial for obtaining high-performance terpolymer donors and provides a novel and low-cost method to improve photovoltaic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    ADS  CAS  Google Scholar 

  2. Zhang, G.; Lin, F. R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H. J.; Li, N.; Chow, P. C. Y.; Brabec, C. J.; Jen, A. K. Y.; Yip, H. L. Renewed prospects for organic photovoltaics. Chem. Rev. 2022, 122, 14180–14274.

    CAS  PubMed  Google Scholar 

  3. Li, S.; Li, Z.; Wan, X.; Chen, Y. Recent progress in flexible organic solar cells. eScience 2023, 3, 100085.

    Google Scholar 

  4. Xie, Q.; Liu, Y.; Liao, X.; Cui, Y.; Huang, S.; Hu, L.; He, Q.; Chen, L.; Chen, Y. Isomeric effect of wide bandgap polymer donors with high crystallinity to achieve efficient polymer solar cells. Macromol. Rapid Commun. 2020, 41, e2000454.

    PubMed  Google Scholar 

  5. Cui, Y.; Zhu, P.; Xia, X.; Lu, X.; Liao, X.; Chen, Y. Carbazolebis(thiadiazole)-core based non-fused ring electron acceptors for efficient organic solar cells. Chin. Chem. Lett. 2023, 34, 107902.

    CAS  Google Scholar 

  6. Xu, G.; Hu, X.; Liao, X.; Chen, Y. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics. Chinese J. Polym. Sci. 2021, 39, 1441–1447.

    CAS  Google Scholar 

  7. Wu, M.; Shi, L.; Hu, Y.; Chen, L.; Hu, T.; Zhang, Y.; Yuan, Z.; Chen, Y. Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chin. Chem. Lett. 2019, 30, 1161–1167.

    CAS  Google Scholar 

  8. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    CAS  Google Scholar 

  9. Jiang, K.; Wei, Q.; Lai, J.; Peng, Z.; Kim, H.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 2019, 3, 3020–3033.

    CAS  Google Scholar 

  10. Wang, J. L.; Wang, L.; An, Q.; Yan, L.; Bai, H. R.; Jiang, M.; Mahmood, A.; Yang, C.; Zhi, H. Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency. Energy Environ. Sci. 2022, 15, 320–333.

    CAS  Google Scholar 

  11. Luo, Z.; Ma, R.; Chen, Z.; Xiao, Y.; Zhang, G.; Liu, T.; Sun, R.; Zhan, Q.; Zou, Y.; Zhong, C.; Chen, Y.; Sun, H.; Chai, G.; Chen, K.; Guo, X.; Min, J.; Lu, X.; Yang, C.; Yan, H. Altering the positions of chlorine and bromine substitution on the end group enables high-performance acceptor and efficient organic solar cells. Adv. Energy Mater. 2020, 10, 2002649.

    CAS  Google Scholar 

  12. Cheng, F.; Cui, Y.; Ding, F.; Chen, Z.; Xie, Q.; Xia, X.; Zhu, P.; Lu, X.; Zhu, H.; Liao, X.; Chen, Y. Terpolymerization and regioisomerization strategy to construct efficient terpolymer donors enabling high-performance organic solar cells. Adv. Mater. 2023, e2300820.

  13. Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z. G.; Bo, Z. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2021, 65, 224–268.

    Google Scholar 

  14. Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 2019, 31, e1906045.

    PubMed  Google Scholar 

  15. Xu, X.; Li, Y.; Peng, Q. Ternary blend organic solar cells: understanding the morphology from recent progress. Adv. Mater. 2022, 34, e2107476.

    PubMed  Google Scholar 

  16. Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

    ADS  CAS  PubMed  Google Scholar 

  17. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171–184.

    ADS  CAS  Google Scholar 

  18. Xu, X.; Yu, L.; Meng, H.; Dai, L.; Yan, H.; Li, R.; Peng, Q. Polymer solar cells with 18.74% efficiency: from bulk heterojunction to interdigitated bulk heterojunction. Adv. Funct. Mater. 2021, 32, 2108797.

    Google Scholar 

  19. Pang, B.; Liao, C.; Xu, X.; Peng, S.; Xia, J.; Guo, Y.; Xie, Y.; Chen, Y.; Duan, C.; Wu, H.; Li, R.; Peng, Q. B-N bond embedded triplet terpolymers with small singlet-triplet energy gaps for suppressing non-radiative recombination and improving blend morphology in organic solar cells. Adv. Mater. 2023, e2211871.

  20. Lu, H.; Liu, W.; Jin, H.; Huang, H.; Tang, Z.; Bo, Z. High-efficiency organic solar cells with reduced nonradiative voltage loss enabled by a highly emissive narrow bandgap fused ring acceptor. Adv. Funct. Mater. 2021, 32, 2107756.

    Google Scholar 

  21. Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, e2109516.

    PubMed  Google Scholar 

  22. Zhang, Z. G.; Bai, Y.; Li, Y. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13.

    Google Scholar 

  23. Chen, S.; Yao, H.; Li, Z.; Awartani, O. M.; Liu, Y.; Wang, Z.; Yang, G.; Zhang, J.; Ade, H.; Yan, H. Surprising effects upon inserting benzene units into a quaterthiophene-based D-A polymer-improving non-fullerene organic solar cells via donor polymer design. Adv. Energy Mater. 2017, 7, 1602304.

    Google Scholar 

  24. Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, H.; Hou, J. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 2018, 140, 7159–7167.

    CAS  PubMed  Google Scholar 

  25. Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

    CAS  PubMed  Google Scholar 

  26. Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 2020, 35, 115–130.

    CAS  Google Scholar 

  27. Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 2018, 30, 1705870.

    Google Scholar 

  28. Jin, K.; Xiao, Z.; Ding, L. D18, an eximious solar polymer! J. Semicond. 2021, 42, 010502.

    ADS  Google Scholar 

  29. Jiang, H.; Qin, G.; Zhang, L.; Pan, F.; Wu, Z.; Wang, Q.; Wen, G.; Zhang, W.; Cao, Y.; Chen, J. Dithienobenzoxadiazole-based wide bandgap donor polymers with strong aggregation properties for the preparation of efficient as-cast non-fullerene polymer solar cells processed using a non-halogenated solvent. J. Mater. Chem. C 2021, 9, 249–259.

    CAS  Google Scholar 

  30. Xie, R.; Ying, L.; An, K.; Zhong, W.; Yin, Q.; Liao, S.; Huang, F.; Cao, Y. Efficient non-fullerene organic solar cells based on a wide-bandgap polymer donor containing an alkylthiophenyl-substituted benzodithiophene moiety. ChemPhysChem 2019, 20, 2668–2673.

    CAS  PubMed  Google Scholar 

  31. Guo, H.; Huang, B.; Zhang, L.; Chen, L.; Xie, Q.; Liao, Z.; Huang, S.; Chen, Y. Double acceptor block-containing copolymers with deep HOMO levels for organic solar cells: adjusting carboxylate substituent position for planarity. ACS Appl. Mater. Interfaces 2019, 11, 15853–15860.

    CAS  PubMed  Google Scholar 

  32. Cho, H. W.; An, N. G.; Park, S. Y.; Shin, Y. S.; Lee, W.; Kim, J. Y.; Song, S. Thermally durable nonfullerene acceptor with nonplanar conjugated backbone for high-performance organic solar cells. Adv. Energy Mater. 2020, 10, 1903585.

    CAS  Google Scholar 

  33. Chao, P.; Chen, H.; Zhu, Y.; Lai, H.; Mo, D.; Zheng, N.; Chang, X.; Meng, H.; He, F. A benzo[1,2-b:4,5-c′]dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16. Adv. Mater. 2020, 32, e1907059.

    PubMed  Google Scholar 

  34. Zeng, A.; Ma, X.; Pan, M.; Chen, Y.; Ma, R.; Zhao, H.; Zhang, J.; Kim, H. K.; Shang, A.; Luo, S.; Angunawela, I. C.; Chang, Y.; Qi, Z.; Sun, H.; Lai, J. Y. L.; Ade, H.; Ma, W.; Zhang, F.; Yan, H. A chlorinated donor polymer achieving high-performance organic solar cells with a wide range of polymer molecular weight. Adv. Funct. Mater. 2021, 31, 2102413.

    CAS  Google Scholar 

  35. Fan, Q.; Zhu, Q.; Xu, Z.; Su, W.; Chen, J.; Wu, J.; Guo, X.; Ma, W.; Zhang, M.; Li, Y. Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy 2018, 48, 413–420.

    CAS  Google Scholar 

  36. Wu, J.; Guo, X.; Xiong, M.; Xia, X.; Li, Q.; Fang, J.; Yan, X.; Liu, Q.; Lu, X.; Wang, E.; Yu, D.; Zhang, M. Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chem. Eng. J. 2022, 446, 137424.

    CAS  Google Scholar 

  37. Qiu, J.; Liu, M.; Wang, Y.; Xia, X.; Liu, Q.; Guo, X.; Lu, X.; Zhang, M. Linear regulating of polymer acceptor aggregation with short alkyl chain units enhances all-polymer solar cells’ efficiency. Macromol. Rapid Commun. 2022, 44, 2200753.

    Google Scholar 

  38. Wu, J.; Li, G.; Fang, J.; Guo, X.; Zhu, L.; Guo, B.; Wang, Y.; Zhang, G.; Arunagiri, L.; Liu, F.; Yan, H.; Zhang, M.; Li, Y. Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells. Nat. Commun. 2020, 11, 4612.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 2011, 133, 20130–20133.

    CAS  PubMed  Google Scholar 

  40. Wang, Q.; Hu, Z.; Wu, Z.; Lin, Y.; Zhang, L.; Liu, L.; Ma, Y.; Cao, Y.; Chen, J. Introduction of siloxane-terminated side chains into semiconducting polymers to tune phase separation with nonfullerene acceptor for polymer solar cells. ACS Appl. Mater. Interfaces 2020, 12, 4659–4672.

    CAS  PubMed  Google Scholar 

  41. Feng, S.; Liu, C.; Xu, X.; Liu, X.; Zhang, L.; Nian, Y.; Cao, Y.; Chen, J. Siloxane-terminated side chain engineering of acceptor polymers leading to over 7% power conversion efficiencies in all-polymer solar cells. ACS Macro Lett. 2017, 6, 1310–1314.

    CAS  PubMed  Google Scholar 

  42. Yin, Z.; Guo, X.; Wang, Y.; Zhu, L.; Chen, Y.; Fan, Q.; Wang, J.; Su, W.; Liu, F.; Zhang, M.; Li, Y. Siloanne-functional small molecule acceptor for high-performance organic solar cells with 16.6% efficiency. Chem. Eng. J. 2022, 442, 136018.

    CAS  Google Scholar 

  43. Jiang, H.; Pan, F.; Zhang, L.; Zhou, X.; Wang, Z.; Nian, Y.; Liu, C.; Tang, W.; Ma, Q.; Ni, Z.; Chen, M.; Ma, W.; Cao, Y.; Chen, J. Impact of the siloxane-terminated side chain on photovoltaic performances of the dithienylbenzodithiophene-difluorobenzotriazole-based wide band gap polymer donor in non-fullerene polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 29094–29104.

    CAS  PubMed  Google Scholar 

  44. Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 2019, 10, 4100.

    ADS  PubMed  PubMed Central  Google Scholar 

  45. Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 2018, 8, 1703085.

    Google Scholar 

  46. Zhao, F.; Yuan, Y.; Ding, Y.; Wang, Y.; Wang, X.; Zhang, G.; Gu, X.; Qiu, L. Taming charge transport and mechanical properties of conjugated polymers with linear siloxane side chains. Macromolecules 2021, 34, 5440–5450.

    ADS  Google Scholar 

  47. Jing, J.; Dou, Y.; Chen, S.; Zhang, K.; Huang, F. Solution sequential deposited organic photovoltaics: from morphology control to large-area modules. eScience 2023. DOI: https://doi.org/10.1016/j.esci.2023.100142.

  48. Chen, X.; Liu, B.; Zou, Y.; Xiao, L.; Guo, X.; He, Y.; Li, Y. A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells. J. Mater. Chem. 2012, 22, 17724–17731.

    CAS  Google Scholar 

  49. Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J. Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 2013, 7, 4569–4577.

    CAS  PubMed  Google Scholar 

  50. Riedel, I.; Parisi, J.; Dyakonov, V.; Lutsen, L.; Vanderzande, D.; Hummelen, J. C. Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2004, 14, 38–44.

    CAS  Google Scholar 

  51. Gao, W.; Liu, T.; Zhong, C.; Zhang, G.; Zhang, Y.; Ming, R.; Zhang, L.; Xin, J.; Wu, K.; Guo, Y.; Ma, W.; Yan, H.; Liu, Y.; Yang, C. Asymmetrical small molecule acceptor enabling nonfullerene polymer solar cell with fill factor approaching 79%. ACS Energy Lett. 2018, 3, 1760–1768.

    CAS  Google Scholar 

  52. Liao, X.; Xie, Q.; Guo, Y.; He, Q.; Chen, Z.; Yu, N.; Zhu, P.; Cui, Y.; Ma, Z.; Xu, X.; Zhu, H.; Chen, Y. Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy Environ. Sci. 2022, 15, 384–394.

    CAS  Google Scholar 

  53. Xu, G.; Rao, H.; Liao, X.; Zhang, Y.; Wang, Y.; Xing, Z.; Hu, T.; Tan, L.; Chen, L.; Chen, Y. Reducing energy loss and morphology optimization Manipulated by molecular geometry engineering for hetero-junction organic solar cells. Chin. J. Chem. 2020, 38, 1553–1559.

    CAS  Google Scholar 

  54. Liao, X.; He, Q.; Zhou, G.; Xia, X.; Zhu, P.; Xing, Z.; Zhu, H.; Yao, Z.; Lu, X.; Chen, Y. Regulating favorable morphology evolution by a simple liquid-crystalline small molecule enables organic solar cells with over 17% efficiency and a remarkable Jsc of 26.56 mA/cm2. Chem. Mater. 2021, 33, 430–440.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 51973032, 21905043, 51833004 and 52333006), the Jiangxi Provincial Natural Science Foundation (Nos. 20212ACB203005, 20224ACB214002, 20212BAB213018 and 20224BAB203015), the Thousand Talents Plan of Jiangxi Province (No. jxsq2019101051), and the Innovation Foundation for graduate students of Jiangxi Normal University (No. YJS2021018). X.X. and X.L. acknowledge the financial support from Research Grants Council (RGC) of Hong Kong (General Research Fund No. 14303519).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xunfan Liao or Yiwang Chen.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3051_MOESM1_ESM.pdf

Random Terpolymer Based on Simple Siloxane-functionalized Thiophene Unit Enabling High-performance Non-fullerene Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Lai, S., Zhang, Y. et al. Random Terpolymer Based on Simple Siloxane-functionalized Thiophene Unit Enabling High-performance Non-fullerene Organic Solar Cells. Chin J Polym Sci 42, 311–321 (2024). https://doi.org/10.1007/s10118-023-3051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3051-y

Keywords

Navigation