Skip to main content

Advertisement

Log in

Highly Improved Creep Resistance in Polypropylene Through Thermally Reduced Graphene Oxide and Its Creep Lifetime Prediction

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polypropylene (PP) exhibits suboptimal creep resistance due to the presence of methyl groups on its main chain, leading to irregular chain segment distribution, diminished inter-chain interaction, and crystallinity. This structural feature causes chain slippage in PP under stress, significantly constraining its service lifetime. In this study, thermally reduced graphene oxide (TrGO) nanosheets were incorporated into the PP matrix, yielding a nanocomposite with exceptional creep resistance performance. Results demonstrated that at a stress of 25 MPa, a 2.0 wt% TrGO content could enhance the creep failure lifetime of PP by 21.5 times compared to neat PP. Rheology, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) characterization techniques were employed to analyze the mechanism of TrGO’s influence on PP’s creep behavior. It was observed that when TrGO content exceeded 1.0 wt%, an effective particle network structure formed within the PP matrix. This homogeneously dispersed TrGO-formed particle network structure restricted the migration and rearrangement of PP molecular chains, enabling prolonged stress resistance without structural failure. By combining the time-strain superposition method with the critical failure strain as a criterion, generalized creep compliance curves for PP and its composites were established, facilitating the prediction of material creep failure lifetimes, with a strong agreement between experimental and predicted lifetime values. This research proposes a novel strategy aimed at developing polypropylene materials and products with enhanced long-term stability and durability, thus extending service life, reducing failure risk, and broadening their potential across various application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maubane, L.; Lekalakala, R.; Orasugh, J. T.; Letwaba, J. Effect of short-chain architecture on the resulting thermal properties of polypropylene. Polymer 2023, 264, 125533.

    Article  CAS  Google Scholar 

  2. Khoury Moussa, H.; Challita, G.; Badreddine, H.; Montay, G.; Guelorget, B.; Vallon, T.; Yared, W.; Abi Rizk, M.; Alhussein, A. Enhancement of mechanical properties of high modulus polypropylene grade for multilayer sewage pipes applications. J. Appl. Polym. Sci. 2022, 140, e53314.

    Article  Google Scholar 

  3. Lv, Y.; Huang, Y.; Kong, M.; Yang, J.; Yang, Q.; Li, G. Creep lifetime prediction of polypropylene/clay nanocomposites based on a critical failure strain criterion. Compos. Sci. Technol. 2014, 96, 71–79.

    Article  CAS  Google Scholar 

  4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  PubMed  CAS  Google Scholar 

  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  PubMed  CAS  Google Scholar 

  6. Bustillos, J.; Montero, D.; Nautiyal, P.; Loganathan, A.; Boesl, B.; Agarwal, A. Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites. Polym. Compos. 2018, 39, 3877–3888.

    Article  CAS  Google Scholar 

  7. Talukder, N.; Wang, Y.; Nunna, B. B.; Lee, E. S. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: a review on chemical structures and stability. Carbon 2021, 185, 198–214.

    Article  CAS  Google Scholar 

  8. Bhardwaj, S. K.; Mujawar, M.; Mishra, Y. K.; Hickman, N.; Chavali, M.; Kaushik, A. Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology 2021, 32, 502001

    Article  CAS  Google Scholar 

  9. Hone, C. L. X. W. J. W. K. J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  PubMed  Google Scholar 

  10. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos. Part A 2007, 38, 1675–1682.

    Article  Google Scholar 

  11. Yun, Y. S.; Bae, Y. H.; Kim, D. H.; Lee, J. Y.; Chin, I. J.; Jin, H. J. Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon 2011, 49, 3553–3559.

    Article  CAS  Google Scholar 

  12. El Achaby, M.; Arrakhiz, F. E.; Vaudreuil, S.; el Kacem Qaiss, A.; Bousmina, M.; Fassi-Fehri, O. Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym. Compos. 2012, 33, 733–744.

    Article  CAS  Google Scholar 

  13. Zandiatashbar, A.; Picu, C. R.; Koratkar, N. Control of epoxy creep using graphene. Small. 2012, 8, 1676–1682.

    Article  PubMed  CAS  Google Scholar 

  14. Tang, L. C.; Wang, X.; Gong, L. X.; Peng, K.; Zhao, L.; Chen, Q.; Wu, L. B.; Jiang, J. X.; Lai, G. Q. Creep and recovery of polystyrene composites filled with graphene additives. Compos. Sci. Technol. 2014, 91, 63–70.

    Article  CAS  Google Scholar 

  15. Wang, X.; Gong, L. X.; Tang, L. C.; Peng, K.; Pei, Y. B.; Zhao, L.; Wu, L. B.; Jiang, J. X. Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos. Part A 2015, 69, 288–298.

    Article  CAS  Google Scholar 

  16. Naz, A.; Riaz, I.; Jalil, R.; Afzal, S.; Qayyum khan, A. Creep strain and recovery analysis of polypropylene composites filled with graphene nano filler. Polymer 2021, 217, 123423.

    Article  CAS  Google Scholar 

  17. Liu, X.; Huang, Y.; Deng, C.; Wang, X.; Tong, W.; Liu, Y.; Huang, J.; Yang, Q.; Liao, X.; Li, G. Study on the creep behavior of polypropylene. Polym. Eng. Sci. 2009, 49, 1375–1382.

    Article  CAS  Google Scholar 

  18. Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403.

    Article  CAS  Google Scholar 

  19. Kolařík, J. Tensile creep of thermoplastics: time-strain superposition of non-iso free-volume data. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 736–748.

    Article  Google Scholar 

  20. Kolaříak, J.; Fambri, L.; Pegoretti, A.; Penati, A.; Goberti, P. Prediction of the creep of heterogeneous polymer blends: rubber-toughened polypropylene/poly(styrene-co-acrylonitrile). Polym. Eng. Sci. 2002, 42, 161–169.

    Article  Google Scholar 

  21. Dorigato, A.; Pegoretti, A.; Kolařík, J. Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: time-strain superposition and creep prediction. Polym. Compos. 2010, 31, 1947–1955.

    Article  CAS  Google Scholar 

  22. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  23. Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  Google Scholar 

  24. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

    Article  CAS  Google Scholar 

  25. Hsiao, M. C.; Liao, S. H.; Lin, Y. F.; Wang, C. A.; Pu, N. W.; Tsai, H. M.; Ma, C. C. M. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale 2011, 3, 1516–1522.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, J.-L.; Zhang, Z.; Schlarb, A. K.; Friedrich, K. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: modeling and prediction of long-term performance. Polymer 2006, 47, 6745–6758.

    Article  CAS  Google Scholar 

  27. Ganss, M.; Satapathy, B. K.; Thunga, M.; Weidisch, R.; Pötschke, P.; Janke, A. Temperature dependence of creep behavior of PP-MWNT nanocomposites. Macromol. Rapid Commun. 2007, 28, 1624–1633.

    Article  CAS  Google Scholar 

  28. Varela-Rizo, H.; Weisenberger, M.; Bortz, D.; Martin-Gullon, I. Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments. Compos. Sci. Technol. 2010, 70, 1189–1195.

    Article  CAS  Google Scholar 

  29. Jia, Y.; Peng, K.; Gong, X. L.; Zhang, Z. Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plast. 2011, 27, 1239–1251.

    Article  CAS  Google Scholar 

  30. Lv, C.; Xue, Q.; Xia, D.; Ma, M.; Xie, J.; Chen, H. Effect of chemisorption on the interfacial bonding characteristics of graphene-polymer composites. J. Phys. Chem. C. 2010, 114, 6588–6594.

    Article  CAS  Google Scholar 

  31. Vermant, J.; Ceccia, S.; Dolgovskij, M.; Maffettone, P.; Macosko, C. Quantifying dispersion of layered nanocomposites via melt rheology. J. Rheol. 2007, 51, 429–450.

    Article  CAS  Google Scholar 

  32. Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49, 2183–2196.

    Article  CAS  Google Scholar 

  33. Lertwimolnun, W.; Vergnes, B. Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 2005, 46, 3462–3471.

    Article  CAS  Google Scholar 

  34. Xu, J.-Z.; Chen, C.; Wang, Y.; Tang, H.; Li, Z. M.; Hsiao, B. S. Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 2011, 44, 2808–2818.

    Article  CAS  Google Scholar 

  35. Aliotta, L.; Gigante, V.; Molinari, G.; D’Ambrosio, R.; Botta, L.; La Mantia, F. P.; Lazzeri, A. Effect of biobased plasticizers, used as dispersing aids, on mechanical, rheological and thermal properties of micro fibrillated cellulose (MFC)/poly(lactic acid) (PLA) biocomposites over the time: how MFC controls the plasticizer migration? Cellulose 2022, 30, 2237–2252.

    Article  Google Scholar 

  36. Yaragalla, S.; Zahid, M.; Panda, J. K.; Tsagarakis, N.; Cingolani, R.; Athanassiou, A. Comprehensive enhancement in thermomechanical performance of melt-extruded PEEK filaments by graphene incorporation. Polymers 2021, 13, 1425–1443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Drozdov, A. Creep rupture and viscoelastoplasticity of polypropylene. Eng. Fract. Mech. 2010, 77, 2277–2293.

    Article  Google Scholar 

  38. Ranade, A.; Nayak, K.; Fairbrother, D.; D’Souza, N. A. Maleated and non-maleated polyethylene-montmorillonite layered silicate blown films: creep, dispersion and crystallinity. Polymer 2005, 46, 7323–7333.

    Article  CAS  Google Scholar 

  39. Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 1936, 4, 283–291.

    Article  CAS  Google Scholar 

  40. Kolařík, J.; Pegoretti, A. Non-linear tensile creep of polypropylene: time-strain superposition and creep prediction. Polymer 2006, 47, 346–356.

    Article  Google Scholar 

  41. Jazouli, S.; Luo, W.; Brémand, F.; Vu-Khanh, T. Nonlinear creep behavior of viscoelastic polycarbonate. J. Mater. Sci. 2006, 41, 531–536.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Sichuan Province (No. 2022NSFSC0296), the National Natural Science Foundation of China (Nos. 51903118 and U19A2096), and State Key Laboratory of Polymer Materials Engineering (No. sklpme2020-1-07, Sichuan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Long Yang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CC., Yang, JL., Huang, YJ. et al. Highly Improved Creep Resistance in Polypropylene Through Thermally Reduced Graphene Oxide and Its Creep Lifetime Prediction. Chin J Polym Sci 42, 256–266 (2024). https://doi.org/10.1007/s10118-023-3028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3028-x

Keywords

Navigation