Skip to main content
Log in

Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polylactide (PLA) has often been blended with biodegradable poly(butylene adipate-co-terephthalate) (PBAT) to improve it toughness. However, the strength and heat resistance of PLA are always sacrificed. Herein, exchangeable hydroxyl-ester crosslinks ar constructed in PLA/PBAT blends by successively introducing a tertiary amine-containing polyol, bis-(2-hydroxyethyl)amino-tri (hydroxymethyl)methane (BTM) and 4,4′-diphenylmethane diisocyanate (MDI) via reactive blending. BTM can react with both PLA and PBAT by transesterification, generating PLA or PBAT chains with terminal or pendant hydroxyl groups, which can then react with MDI to form networks With internal catalysis of tertiary amine moiety in BTM, transesterification between the residual hydroxyl groups and ester bonds can occur at high temperatures, endowing the PLA/PBAT network with vitrimeric properties. Owning to the transesterification and chain extension reactions with MDI between PLA and PBAT, the interfacial adhesion is greatly improved. As a result of the excellent interfacial adhesion and the network structure, the prepared PLA/PBAT blends show greatly enhanced heat resistance and toughness (more than 40 times that of PLA) while maintaining high stiffness comparable to PLA. Furthermore, the prepared PLA/PBAT blends exhibit promising reconfigurable shape memory behavior. The present work provides a new and facile way to achieve high-performance and functional biodegradable polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemistry can help make plastics sustainable - but it isn’t the whole solution. Nature 2021, 590, 363–364.

  2. Silva, A. L. P.; Prata, J. C.; Walker, T. R.; Duarte, A. C.; Ouyang, W.; Barcelo, D.; Rocha-Santos, T. Increased plastic pollution due to Covid-19 pandemic: challenges and recommendations. Chem. Eng. J. 2021, 405, 126683.

    Article  Google Scholar 

  3. Flury, M.; Narayan, R. Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Curr. Opin. Green Sustain. Chem. 2021, 30, 2452–2236.

    Google Scholar 

  4. Ghosh, K.; Jones, B. H. Roadmap to biodegradable plastics— current state and research needs. ACS Sustainable Chem. Eng. 2021, 9, 6170–6187.

    Article  CAS  Google Scholar 

  5. Altman, R. The myth of historical bio-based plastics early bio-based plastics, which were neither clean nor green, offer lessons for today. Science 2021, 373, 47–49.

    Article  CAS  PubMed  Google Scholar 

  6. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392.

    Article  CAS  Google Scholar 

  7. Tripathi, N.; Misra, M.; Mohanty, A. K. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: recent developments, challenges, and opportunities. ACS Eng. Au 2021, 1, 7–38.

    Article  CAS  Google Scholar 

  8. Yeo, J. C. C; Muiruri, J. K.; Koh, J. J.; Thitsartarn, W.; Zhang, X. K.; Kong, J. H.; Lin, T. T.; Li, Z. B.; He, C. B. Bend, twist, and turn: first bendable and malleable toughened PLA green composites. Adv. Funct. Mater. 2020, 30, 2001565.

    Article  CAS  Google Scholar 

  9. Qu, Y. D.; Chen, Y. H.; Ling, X. Y.; Wu, J. L.; Hong, J. T.; Wang, H. T.; Li, Y. J. Reactive micro-crosslinked elastomer for supertoughened polylactide. Macromolecules 2022, 55, 7711–7723.

    Article  CAS  Google Scholar 

  10. Dong, X. Y.; Wu, Z. G.; Wang, Y.; Li, T.; Yuan, H.; Zhang, X. H.; Ma, P. M.; Chen, M. Q.; Dong, W. F. Design of degradable core-shell starch nanoparticles by radical ring-opening polymerization of 2-methylene-1,3-dioxepane and their toughening of polyflactic acid). Compos. Commun. 2021, 27, 100808.

    Article  Google Scholar 

  11. Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: the future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127.

    Article  CAS  Google Scholar 

  12. Yang, H. R.; Jia, G.; Wu, H.; Ye, C. C; Yuan, K.; Liu, S. L.; Zhou, L. M.; Xu, H.; Gao, L. J.; Cui, J.; Fang, S. M. Design of fully biodegradable super-toughened PLA/PBAT blends with asymmetric composition via reactive compatibilization and controlling morphology. Mater. Lett. 2022, 329, 133067.

    Article  CAS  Google Scholar 

  13. Chen, J. L.; Rong, C. Y.; Lin, T. T.; Chen, Y. H.; Wu, J. L.; You, J. C; Wang, H. T.; Li, Y. J. Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereocomplex crystallites: toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates. Macromolecules 2021, 54, 2852–2861.

    Article  CAS  Google Scholar 

  14. Mohammadi, M.; Bruel, C; Heuzey, M. C.; Carreau, P. J. CNC dispersion in PLA and PBAT using two solvents: morphological and rheological properties. Cellulose 2020, 27, 9877–9892.

    Article  CAS  Google Scholar 

  15. Dong, X. Y.; Liu, L.; Wang, Y.; Li, T.; Wu, Z. G.; Yuan, H.; Ma, P. M.; Shi, D. J.; Chen, M. Q.; Dong, W. F. The compatibilization of polyfpropylene carbonate)/poly(lactic acid) blends in presence of core-shell starch nanoparticles. Carbohydr. Polym. 2021, 254, 8.

    Article  Google Scholar 

  16. Cvek, M.; Paul, U. C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable films of PLA/PPC and curcumin as packaging materials and smart indicators of food spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulchandani, N.; Masutani, K.; Kumar, S.; Yamane, H.; Sakurai, S.; Kimura, Y.; Katiyar, V. Toughened PLA-b-PCL-b-PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polym. Chem. 2021, 12, 3806–3824.

    Article  CAS  Google Scholar 

  18. Zhang, C. M.; Zhai, T. L.; Turng, L. S.; Dan, Y. Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind. Eng. Chem. Res. 2015, 54, 9505–9511.

    Article  CAS  Google Scholar 

  19. Vidhya Nagarajan, K. Z., Manjusri Misra, Amar K. Mohanty. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces 2015, 7, 11203–11214.

    Article  PubMed  Google Scholar 

  20. Si, W. J.; Zhang, H.; Li, Y. D.; Huang, C. L.; Weng, Y. X.; Zeng, J. B. Highly toughened and heat resistant poly(L-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Compos. B. Eng. 2020, 197, 1359–8368.

    Article  Google Scholar 

  21. Zhao, X. P.; Liu, J. C; Li, J. C.; Liang, X. Y.; Zhou, W. Y.; Peng, S. X. Strategies and techniques for improving heat resistance and mechanical performances of polyflactic acid) (PLA) biodegradable materials. Int. J. Biol. Macromol. 2022, 218, 115–134.

    Article  CAS  Google Scholar 

  22. Bednarek, M.; Borska, K.; Kubisa, P. New polylactide-based materials by chemical crosslinking of PLA. Polym. Rev. 2021, 61, 493–519.

    Article  CAS  Google Scholar 

  23. Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 36, 191–217.

    Article  CAS  Google Scholar 

  24. Nagasawa, N.; Kasai, N.; Yagi, T.; Yoshii, F.; Tamada, M. Radiation-induced crosslinking and post-processing of poly(L-lactic acid) composite. Radial Phys. Chem. 2011, 80, 145–148.

    Article  CAS  Google Scholar 

  25. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  26. Van Zee, N. J.; Nicolay, R. Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 2020, 104, 67–79.

    Article  Google Scholar 

  27. Rottger, M.; Domenech, T.; van der Weegen, R.; Nicolay, A. B. R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65.

    Article  PubMed  Google Scholar 

  28. Lessard, J. J.; Garcia, L. F.; Easterling, C. P.; Sims, M. B.; Bentz, K. C.; Arencibia, S.; Savin, D. A.; Sumerlin, B. S. Catalyst-free vitrimers from vinyl polymers. Macromolecules 2019, 52, 2105–2111.

    Article  CAS  Google Scholar 

  29. Wang, S.; Ma, S. Q.; Qiu, J. F.; Tian, A. P.; Li, Q.; Xu, X. W.; Wang, B. B.; Lu, N.; Liu, Y. L.; Zhu, J. Upcycling of post-consumer polyolefin plastics to covalent adaptable networks via in situ continuous extrusion cross-linking. Green Chem. 2021, 23, 2931–2937.

    Article  CAS  Google Scholar 

  30. Saed, M. O.; Lin, X. Y.; Terentjev, E. M. Dynamic semicrystalline networks of polypropylene with thiol-anhydride exchangeable crosslinks. ACS Appl. Mater. Interfaces 2021, 13, 42055–42062.

    Article  Google Scholar 

  31. Demongeot, A.; Groote, R.; Goossens, H.; Hoeks, T.; Tournilhac, F.; Leibler, L. Cross-linking of polyfbutylene terephthalate) by reactive extrusion using Zn(II) epoxy-vitrimer chemistry. Macromolecules 2017, 50, 6117–6127.

    Article  CAS  Google Scholar 

  32. Qiu, J. F.; Ma, S. Q.; Wang, S.; Tang, Z. B.; Li, Q.; Tian, A. P.; Xu, X. W.; Wang, B. B.; Lu, N.; Zhu, J. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion. Macromolecules 2021, 54, 703–712.

    Article  CAS  Google Scholar 

  33. Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3, 607–610.

    Article  CAS  PubMed  Google Scholar 

  34. Borska, K.; Bednarek, M.; Pawlak, A. Reprocessable polylactide-based networks containing urethane and disulfide linkages. Eur. Polym. J. 2021, 156, 0014–3057.

    Article  Google Scholar 

  35. Liu, Y. B.; Peng, L. M.; Bao, R. Y.; Yang, M. B.; Yang, W. Vitrimeric polylactide by two-step alcoholysis and transesterification during reactive processing for enhanced melt strength. ACS Appl. Mater. Interfaces 2022, 14, 45966–45977.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X.; Zeng, Z.; Ju, Y.; Zhou, M.; Bai, H.; Fu, Q. Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compatibilization and dynamic vulcanization. Polymer 2023, 266, 125620.

    Article  CAS  Google Scholar 

  37. Ai, X.; Li, X.; Yu, Y. L.; Pan, H. W.; Yang, J.; Wang, D. M.; Yang, H. L.; Zhang, H. L.; Dong, L. S. The mechanical, thermal, rheological and morphological properties of PLA/PBAT blown films by using bisftert-butyl dioxy isopropyl) benzene as crosslinking agent. Polym. Eng. Sci. 2019, 59, E227–E236.

    Article  CAS  Google Scholar 

  38. Carbonell-Verdu, A.; Ferri, J. M.; Dominici, F.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Torre, L. Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polym. Lett. 2018, 12, 808–823.

    Article  CAS  Google Scholar 

  39. da Silva, J. M. F.; Soares, B. G. Epoxidized cardanol-based prepolymer as promising biobased compatibilizing agent for PLA/PBAT blends. Polym. Test. 2021, 93, 7.

    Google Scholar 

  40. Qi, J.; Pan, Y. T.; Luo, Z. L.; Wang, B. B. Facile and scalable fabrication of bioderived flame retardant based on adenine for enhancing fire safety of fully biodegradable PLA/PBAT/TPS ternary blends. J. Appl. Polym. Sci. 2021, 138, 17.

    Article  Google Scholar 

  41. Han, Y.; Shi, J. W.; Mao, L. X.; Wang, Z.; Zhang, L. Q. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Ind. Eng. Chem. Res. 2020, 59, 21779–21790.

    Article  CAS  Google Scholar 

  42. Ludwiczak, J.; Frackowiak, S.; Leluk, K. Study of thermal, mechanical and barrier properties of biodegradable PLA/PBAT films with highly oriented MMT. Materials 2021, 14, 12.

    Article  Google Scholar 

  43. Aidas, M.; Ferri, J. M.; Motoc, D. L.; Peponi, L.; Arrieta, M. P.; Lopez-Martinez, J. Gum rosin as a size control agent of poly(butylene adipate-co-terephthalate) (PBAT) domains to increase the toughness of packaging formulations based on polylactic acid (PLA). Polymers 2021, 13, 19.

    Google Scholar 

  44. Aliotta, L.; Canesi, I.; Lazzeri, A. Study on the preferential distribution of acetyl tributyl citrate in poly (lactic) acid-poly(butylene adipate-co-terephthalate) blends. Polym. Test. 2021, 98, 14.

    Article  Google Scholar 

  45. Sarul, D. S.; Arslan, D.; Vatansever, E.; Kahraman, Y.; Durmus, A.; Salehiyan, R.; Nofar, M. Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid. Polym. Sei. 2021, 299, 987–998.

    Article  CAS  Google Scholar 

  46. He, H. Z.; Liu, B. D.; Xue, B.; Zhang, H. Study on structure and properties of biodegradable PLA/PBAT/organic-modified MMT nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35, 503–520.

    Article  CAS  Google Scholar 

  47. Nofar, M.; Salehiyan, R.; Ciftci, U.; Jalali, A.; Durmus, A. Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos. B Eng. 2020, 182, 13.

    Article  Google Scholar 

  48. Wang, X.; Peng, S. X.; Chen, H.; Yu, X. L.; Zhao, X. P. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos. B. Eng. 2019, 173, 10.

    Article  Google Scholar 

  49. Thiyagu, T. T; Kumar, J.; Gurusamy, P.; Sathiyamoorthy, V.; Maridurai, T.; Prakash, V. R. A. Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films. Biomass Corners. Biorefin. 2021, 23, 11.

    Google Scholar 

  50. Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55, 11421–11425.

    Article  CAS  Google Scholar 

  51. Cao, L. M.; Liu, C; Zou, D. J.; Zhang, S. D.; Chen, Y. K. Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohydr. Polym. 2020, 230, 8.

    Article  Google Scholar 

  52. He, S. Y.; Hu, S. K.; Wu, Y. W.; Jin, R. H.; Niu, Z. H.; Wang, R. G.; Xue, J. J.; Wu, S. Z.; Zhao, X. Y.; Zhang, L. Q. Polyurethanes based on polylactic acid for 3D printing and shape-memory applications. Biomacromolecules 2022, 34, 11.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21975108 and 52103082), Fundamental Research Funds for the Central Universities (No. JUSRP122016), Wuxi “Light of Taihu Lake” Science and Technology Research Plan (Basic Research, No. K20221008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Huang or Wei-Fu Dong.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2997_MOESM1_ESM.pdf

Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks

Supplementary material, approximately 4.63 MB.

Supplementary material, approximately 2.76 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XW., Huang, J., Zhang, XH. et al. Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks. Chin J Polym Sci 41, 1868–1878 (2023). https://doi.org/10.1007/s10118-023-2997-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2997-0

Keywords

Navigation