Skip to main content
Log in

3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on A Conjugated Polymer Synthesized by Direct Arylation Polycondensation

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The solubility of a direct arylation polycondensation (DArP) synthesized conjugated polymer, i.e., poly(3,6-bis(furan-2-yl)-2,5-bis(4-tetradecyloctadecyl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-1,2-bis(3,4-difluorothien-2-yl)ethene) (PFuDPP-4FTVT), in various organic solvents was studied. The polymer is soluble in 3-methylcyclohexanone (3-MC), a green solvent from peppermint oil, besides other solvents such as anisole, cyclopentyl methyl ether (CPME) and o-dichlorobenzene (o-DCB), etc. Based on the Hansen solubility parameters (HSP) analysis, 3-MC is identified as a “marginal solvent” of PFuDPP-4FTVT. The morphology of the spin-coated films with 3-MC as the solvent strongly correlated with the solution preparation conditions. With a 3-MC solution aged for 3 h at 70 °C, n-channel organic thin-film transistors (OTFTs) with electron mobility (μe) above 1 cm2·V−1·s−1 and current on/off ratio (Ion/Ioff) higher than 105 were fabricated by spin-coating. This is the first report on high mobility conjugated polymers for OTFTs processible with naturally occurred green solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, F.; Bo, Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 988–1046.

    CAS  Google Scholar 

  2. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 2019, 30, 1904545.

    Article  Google Scholar 

  3. Zhou, Y.; Zhang, W.; Yu, G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem. Sci. 2021, 12, 6844–6878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, J.; Yang, J.; Guo, Y.; Liu, Y. Acceptor modulation strategies for improving the electron transport in high-performance organic field-effect transistors. Adv. Mater. 2022, 34, e2104325.

    Article  PubMed  Google Scholar 

  5. Liu, Q.; Bottle, S. E.; Sonar, P. Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics. Adv. Mater. 2020, 32, e1903882.

    Article  PubMed  Google Scholar 

  6. Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D. The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities. Adv. Mater. 2019, 31, e1903104.

    Article  PubMed  Google Scholar 

  7. Nielsen, C. B.; Turbiez, M.; McCulloch, I. Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 2013, 25, 1859–1880.

    Article  CAS  PubMed  Google Scholar 

  8. Shen, T.; Li, W.; Zhao, Y.; Liu, Y.; Wang, Y. An all-C−H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter 2022, 5, 1953–1968.

    Article  CAS  Google Scholar 

  9. Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 2013, 135, 14896–14899.

    Article  CAS  PubMed  Google Scholar 

  10. Yao, J.; Yu, C.; Liu, Z.; Luo, H.; Yang, Y.; Zhang, G.; Zhang, D. Significant improvement of semiconducting performance of the diketopyrrolopyrrole-quaterthiophene conjugated polymer through side-chain engineering via hydrogen-bonding. J. Am. Chem. Soc. 2016, 138, 173–185.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Z.; Gao, M.; He, C.; Shi, W.; Deng, Y.; Han, Y.; Ye, L.; Geng, Y. Unraveling the molar mass dependence of shearing-induced aggregation structure of a high-mobility polymer semiconductor. Adv. Mater. 2022, 34, e2108255.

    Article  PubMed  Google Scholar 

  12. Zhang, A.; Xiao, C.; Wu, Y.; Li, C.; Ji, Y.; Li, L.; Hu, W.; Wang, Z.; Ma, W.; Li, W. Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors. Macromolecules 2016, 49, 6431–6438.

    Article  CAS  Google Scholar 

  13. Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H. Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem. Mater. 2015, 27, 1732–1739.

    Article  CAS  Google Scholar 

  14. Lv, S. Y.; Li, Q. Y.; Li, B. W.; Wang, J. Y.; Mu, Y. B.; Li, L.; Pei, J.; Wan, X. B. Thiazole-flanked thiazoloisoindigo as a monomer for balanced ambipolar polymeric field-effect transistors. Chinese J. Polym. Sci. 2022, 40, 1131–1140.

    Article  CAS  Google Scholar 

  15. Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934.

    Article  CAS  Google Scholar 

  16. Campana, F.; Kim, C.; Marrocchi, A.; Vaccaro, L. Green solvent-processed organic electronic devices. J. Mater. Chem. C 2020, 8, 15027–15047.

    Article  CAS  Google Scholar 

  17. Ran, Y.; Guo, Y.; Liu, Y. Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors. Mater. Horiz. 2020, 7, 1955–1970.

    Article  CAS  Google Scholar 

  18. Choi, H. H.; Baek, J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S.-K.; Kim, Y. H. A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents. Adv. Mater. 2015, 27, 3626–3631.

    Article  CAS  PubMed  Google Scholar 

  19. Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R. A. J.; Li, W. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a nonchlorinated solvent. Adv. Mater. 2016, 28, 943–950.

    Article  CAS  PubMed  Google Scholar 

  20. Yun, H. J.; Lee, G. B.; Chung, D. S.; Kim, Y. H.; Kwon, S. K. Novel diketopyrroloppyrrole random copolymers: high charge-carrier mobility from environmentally benign processing. Adv. Mater. 2014, 26, 6612–6616.

    Article  CAS  PubMed  Google Scholar 

  21. Ding, S.; Ni, Z.; Hu, M.; Qiu, G.; Li, J.; Ye, J.; Zhang, X.; Liu, F.; Dong, H.; Hu, W. An asymmetric furan/thieno[3,2-b]thiophene diketopyrrolopyrrole building block for annealing-free green-solvent processable organic thin-film transistors. Macromol. Rapid Commun. 2018, 39, e1800225.

    Article  PubMed  Google Scholar 

  22. Wang, Z.; Song, X.; Jiang, Y.; Zhang, J.; Yu, X.; Deng, Y.; Han, Y.; Hu, W.; Geng, Y. A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent. Adv. Sci. 2019, 6, 1902412.

    Article  CAS  Google Scholar 

  23. Wang, Z.; Shi, Y.; Deng, Y.; Han, Y.; Geng, Y. Toward high mobility green solvent-processable conjugated polymers: a systematic study on chalcogen effect in poly(diketopyrrolopyrrole-alt-terchalcogenophene)s. Adv. Funct. Mater. 2021, 31, 2104881.

    Article  CAS  Google Scholar 

  24. Ding, Y.; Zhao, F.; Kim, S.; Wang, X.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L. Azaisoindigo-based polymers with a linear hybrid siloxane-based side chain for high-performance semiconductors processable with nonchlorinated solvents. ACS Appl. Mater. Interfaces 2020, 12, 41832–41841.

    Article  CAS  PubMed  Google Scholar 

  25. Ding, Y.; Jiang, L.; Du, Y.; Kim, S.; Wang, X.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L. Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chem. Commun. 2020, 56, 11867–11870.

    Article  CAS  Google Scholar 

  26. Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehada, S.; Dunn, P. J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296.

    Article  Google Scholar 

  27. Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879–3890.

    Article  CAS  Google Scholar 

  28. Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s solvent selection guide: a step toward more sustainable processes. Org. Process Res. Dev. 2013, 17, 1517–1525.

    Article  CAS  Google Scholar 

  29. Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem. 2008, 10, 31–36.

    Article  CAS  Google Scholar 

  30. Chen, M. S.; Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A.; Fréchet, J. M. J. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 2013, 135, 19229–19236.

    Article  CAS  PubMed  Google Scholar 

  31. Sonar, P.; Chang, J.; Kim, J. H.; Ong, K. H.; Gann, E.; Manzhos, S.; Wu, J.; McNeill, C. R. High-mobility ambipolar organic thin-film transistor processed from a nonchlorinated solvent. ACS Appl. Mater. Interfaces 2016, 8, 24325–24330.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S. M.; Lee, H. R.; Han, A. R.; Lee, J.; Oh, J. H.; Yang, C. High-performance furan-containing conjugated polymer for environmentally benign solution processing. ACS Appl. Mater. Interfaces 2017, 9, 15652–15661.

    Article  CAS  PubMed  Google Scholar 

  33. Sui, Y.; Wang, Z.; Bai, J.; Shi, Y.; Zhang, X.; Deng, Y.; Han, Y.; Geng, Y. Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors. J. Mater. Chem. C 2022, 10, 2616–2622.

    Article  CAS  Google Scholar 

  34. Li, C.; Misovich, M. V.; Pardo, M.; Fang, Z.; Laskin, A.; Chen, J.; Rudich, Y. Secondary organic aerosol formation from atmospheric reactions of anisole and associated health effects. Chemosphere 2022, 308, 136421.

    Article  CAS  PubMed  Google Scholar 

  35. Snyder, R.; Hedli, C. C. An overview of benzene metabolism. Environ. Health Perspect 1996, 104, 1165–1171.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohaddese M.; Nastaran K. Chemical composition and antimicrobial activity of peppermint (mentha piperita L.) essential oil. Songklanakarin J. Sci. Technol. 2014, 36, 83–87.

    Google Scholar 

  37. Newberne, P; Doull, J; Feron, V. J.; Goodman, J. I.; Munro, I. C.; Portoghese, P. S.; Waddell, W. J.; Wagner, B. M.; Weil, C. S.; Adams, T. B.; Hallagan, J. B. GRAS flavoring substances 19. Food Technol. 2000, 54, 66–84.

    Google Scholar 

  38. Lee, J.; Kim, G. W.; Kim, M.; Park, S. A.; Park, T. Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency. Adv. Energy Mater. 2020, 10, 1902662.

    Article  CAS  Google Scholar 

  39. Machui, F.; Abbott, S.; Waller, D.; Koppe, M.; Brabec, C. J. Determination of Solubility Parameters for organic semiconductor formulations. Macromol. Chem. Phys. 2011, 212, 2159–2165.

    Article  CAS  Google Scholar 

  40. Kim, N. K.; Shin, E. S.; Noh, Y. Y.; Kim, D. Y. A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Org. Electron. 2018, 55, 6–14.

    Article  CAS  Google Scholar 

  41. Dereje, M. M.; Ji, D.; Kang, S.H.; Yang, C.; Noh, Y. Y. Effect of pre-aggregation in conjugated polymer solution on performance of diketopyrrolopyrrole-based organic field-effect transistors. Dyes Pigments 2017, 145, 270–276.

    Article  CAS  Google Scholar 

  42. Gaikwad, A. M.; Khan, Y.; Ostfeld, A. E.; Pandya, S.; Abraham, S.; Arias, A. C. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 2016, 30, 18–29.

    Article  CAS  Google Scholar 

  43. Li, H.; Liu, X.; Jin, T.; Zhao, K.; Zhang, Q.; He, C.; Yang, H.; Chen, Y.; Huang, J.; Yu, X.; Han, Y. Optimizing the intercrystallite connection of a donor-acceptor conjugated semiconductor polymer by controlling the crystallization rate via temperature. Macromol. Rapid Commun. 2022, 43, e2200084.

    Article  PubMed  Google Scholar 

  44. Zhao, K.; Zhang, Q.; Chen, L.; Zhang, T.; Han, Y. Nucleation and growth of P(NDI2OD-T2) nanowires via side chain ordering and backbone planarization. Macromolecules 2021, 54, 2143–2154.

    Article  CAS  Google Scholar 

  45. Hansen, C. M. in Hansen Solubility Parameters: A User’s Handbook. CRC Press: Boca Raton, 2007, p. 75.

    Book  Google Scholar 

  46. Panzer, F.; Bassler, H.; Kohler, A. Temperature induced order-disorder transition in solutions of conjugated polymers probed by optical spectroscopy. J. Phys. Chem. Lett. 2017, 8, 114–125.

    Article  CAS  PubMed  Google Scholar 

  47. Schroeder, B. C.; Chiu, Y. C.; Gu, X.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M. F.; Bao, Z. Non-conjugated flexible linkers in semiconducting polymers: a pathway to improved processability without compromising device performance. Adv. Electron. Mater. 2016, 2, 1600104.

    Article  Google Scholar 

  48. Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Bredas, J. L.; Marder, S. R.; Kahn, A.; Kippelen, B. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332.

    Article  CAS  PubMed  Google Scholar 

  49. Dong, H.; Jiang, S.; Jiang, L.; Liu, Y.; Li, H.; Hu, W.; Wang, E.; Yan, S.; Wei, Z.; Xu, W.; Gong, X. Nanowire crystals of a rigid rod conjugated polymer. J. Am. Chem. Soc. 2009, 131, 17315–17320.

    Article  CAS  PubMed  Google Scholar 

  50. Yao, Y.; Dong, H.; Liu, F.; Russell, T. P.; Hu, W. Approaching intra- and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals. Adv. Mater. 2017, 29, 1701251.

    Article  Google Scholar 

  51. Yao, Z. F.; Li, Q. Y.; Wu, H. T.; Ding, Y. F.; Wang, Z. Y.; Lu, Y.; Wang, J. Y.; Pei, J. Building crystal structures of conjugated polymers through X-ray diffraction and molecular modeling. SmartMat 2021, 2, 378–387.

    Article  CAS  Google Scholar 

  52. Rivnay, J.; Noriega, R.; Kline, R. J.; Salleo, A.; Toney, M. F. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 2011, 84, 045203.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51933008 and 52121002) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Li Wang or Yan-Hou Geng.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2023_2937_MOESM1_ESM.pdf

3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on A Conjugated Polymer Synthesized by Direct Arylation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, DS., Zhang, XW., Wang, ZL. et al. 3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on A Conjugated Polymer Synthesized by Direct Arylation Polycondensation. Chin J Polym Sci 41, 824–831 (2023). https://doi.org/10.1007/s10118-023-2937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2937-z

Keywords

Navigation