Skip to main content
Log in

Rapid Self-healing and Strong Adhesive Elastomer via Supramolecular Aggregates from Core-shell Micelles of Silicon Hydroxyl-functionalized cis-Polybutadiene

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Liquid trimethoxy silane-functionalized cis-polybutadiene (cis-PB-Si(OMe)3), possessing number-average molecular weights of cis-PB segments (Mn,PB) ranging from 1800 g/mol to 5400 g/mol, with cis-1,4 content of ca. 80% and high functionality (>96%) could be synthesized by coordination copolymerization of living cis-PB chain ends with ethenyltrimethoxy-silane with neodymium-based catalytic system. The silicon hydroxyl-functionalized cis-polybutadiene (cis-PB-Si(OH)3)-based micelles in water have been achieved by in situ hydrolysis of cis-PB-Si(OMe)3 in hexane/water mixture (pH=6.8) at 70 °C and by sequential removal of residue hexane. The size of the above micelles with soft elastic cis-PB cores could be remarkably enlarged by loading SiO2 nanoparticles on their surfaces via hydrogen bonding interaction. Giant supramolecular long chain aggregates or networks formed by hydrogen bonding interaction and possible O—Si—O chemical bonds between cis-PB-Si(OH)3-based micellar surfaces had relatively large size and thus precipitated from water after several months of storage, leading to production of cis-PB-Si(OH)3 solid elastomer with extremely low Tg at −107.0 °C. The left cis-PB-Si(OH)3-based micelles in water with relatively small size gradually formed the water-insoluble cis-PB-Si(OH)3-based supramolecular aggregates or networks. The cis-PB-Si(OH)3-based supramolecular elastomer exhibited excellent self-healing property within 60 s at 25 °C. The elastomer (20 mg) in a joint of 25 mm × 30 mm (2.7 mg/cm2) provided very strong adhesion for two pieces of glass and the bound glass keep unchanged at room temperature for 98 h even hung with 100 g of steel column below. The cis-PB-Si(OH)3-based supramolecular elastomer would have potential applications in adhesives, self-healing materials, damping materials and elastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwag, G. Ultra high cis polybutadiene by monomeric neodymium catalyst and its mechanical and dynamic properties. Macromol. Res. 2010, 18, 533–538.

    Article  CAS  Google Scholar 

  2. Zhu, H.; Zuo, X. L.; Zhang, S.; Ma, X. L.; Liu, Y. F.; Wu, Y. X. Progress in rare earth catalysts and their use in the synthesis of rubber and elastomer. Chinese Polym. Bull. 2014, 5, 65–87.

    CAS  Google Scholar 

  3. Zhu, X.; Fan, X.; Zhao, N.; Liu, J.; Min, X.; Wang, Z. Comparative study of structures and properties of HTPBs synthesized via three different polymerization methods. Polym. Test. 2018, 68, 201–207.

    Article  CAS  Google Scholar 

  4. Tu, J.; Xu, H.; Liang, L.; Pingyun Li, P. Y.; Guo, X. D. Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. New J. Chem. 2020, 44, 19184–19191.

    Article  CAS  Google Scholar 

  5. Zheng, N.; Jie, S. Y.; Li, B. G. Synthesis, chemical modifications and applications of hydroxyl-terminated polybutadiene. Prog. Chem. 2016, 5, 665–672.

    Google Scholar 

  6. Zhou, Q.; Jie, S. Y.; Li, B. G. Facile synthesis of novel HTPBs and EHTPBs with high cis-1,4 content and extremely low glass transition temperature. Polymer 2015, 67, 208–215.

    Article  CAS  Google Scholar 

  7. Sadeghi, G. M. M.; Morshedian, J.; Barikani, M. The effect of solvent on the microstructure, nature of hydroxyl end groups and kinetics of polymerization reaction in synthesize of hydroxyl terminated polybutadiene. React. Funct. Polym. 2006, 66, 255–266.

    Article  Google Scholar 

  8. Chen, J. M.; Lu, Z. J.; Pan, G. Q.; Qi, Y. X.; Yi, J. J.; Bai, H. J. Synthesis of hydroxyl-terminated polybutadiene possessing high content of 1,4-units via anionic polymerization. Chinese J. Polym. Sci. 2010, 28, 715–720.

    Article  CAS  Google Scholar 

  9. Bielawski, C. W.; Scherman, O. A.; Grubbs, R. H. Highly efficient syntheses of acetoxy- and hydroxy-terminated telechelic poly(butadiene)s using ruthenium catalysts containing N-heterocyclic ligands. Polymer 2001, 42, 4939–4945.

    Article  CAS  Google Scholar 

  10. Zhou, Q. Z.; Jie, S. Y.; Li, B. G. Preparation of Hydroxyl-terminated polybutadiene with high cis-1,4 content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893.

    Article  CAS  Google Scholar 

  11. Zhou, Q. Z.; Wang, A. Q.; Dai, L. Jie, S. Y.; Li B. G. Cleavable polybutadiene rubber: a versatile precursor to hydroxyl-terminated or multi-hydroxyl polybutadiene and polyethylene. Polymer 2016, 107, 306–315.

    Article  CAS  Google Scholar 

  12. Zheng, Y. Y.; Zhu, H.; Huang, X. C.; Wu, Y. X. Amphiphilic silicon hydroxyl-functionalized cis-polybutadiene: synthesis, characterization, and properties. Macromolecules 2021, 54, 2427–2438.

    Article  CAS  Google Scholar 

  13. Kwag, G.; Kim, A.; Lee, S. Method of preparation of siloxane-functionalized high 1,4-cis polybutadiene. US 20020137843, 2002.

  14. Zhang, J.; Liu, K.; Mullen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Chem. Commun. 2015, 51, 11541–11555.

    Article  CAS  Google Scholar 

  15. Topel, Ö.; Çakır, B. A.; Budama, L.; Hoda, N. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J. Mol. Liq. 2013, 177, 40–43.

    Article  CAS  Google Scholar 

  16. Luo, Y. L.; Zhang, X. Y.; Wang, Y.; Han, F. J.; Xu, F.; Chen, Y. S. Mediating physicochemical properties and paclitaxel release of pH-responsive H-type multiblock copolymer self-assembly nanomicelles through epoxidation. J Mater. Chem. B 2017, 5, 3111–3121.

    Article  CAS  Google Scholar 

  17. Meng, F. L.; Zheng, S. X.; Zhang, W. A.; Li, H. Q.; Liang, Q. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 2006, 39, 711–719.

    Article  CAS  Google Scholar 

  18. Betthausen, E.; Hanske, C.; Müller, M.; Fery, A.; Schacher, F. H.; Müller, A. H. E.; Pochan, D. J. Self-assembly of amphiphilic triblock terpolymers mediated by multifunctional organic acids: vesicles, toroids, and (undulated) ribbons. Macromolecules 2014, 47, 1672–1683.

    Article  CAS  Google Scholar 

  19. Zhang, W. B.; Luo, J.; Wang, Y. M.; Zhu, X. Z.; Zhang, C.; Liu, J.; Ni, M. L.; Zhang, G. H. Hydroxyl-terminated polyethylenes bearing functional side groups: facile synthesis and their properties. Chinese J. Polym. Sci. 2021, 39, 994–1003.

    Article  CAS  Google Scholar 

  20. Liang, H.; Zhou, Q.; Long, Y.; Wei, W.; Feng, S.; Liang, G.; Zhu, F. Synthesis and self-assembly of a novel amphiphilic diblock copolymer consisting of isotactic polystyrene and 1,4-trans-polybutadiene-graft-poly(ethylene oxide). RSC Adv. 2018, 8, 12752–12759.

    Article  CAS  Google Scholar 

  21. Ho, K. M.; Li, W. Y.; Lee, C. H.; Yam, C. H.; Gilbert, R. G.; Li, P. Mechanistic study of the formation of amphiphilic core-shell particles by grafting methyl methacrylate from polyethylenimine through emulsion polymerization. Polymer 2010, 51, 3512–3519.

    Article  CAS  Google Scholar 

  22. Hoda, N.; Budama, L.; Çakir, B. A.; Topel, Ö.; Ozisik, R. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors. Mater. Res. Bull. 2013, 48, 3183–3188.

    Article  CAS  Google Scholar 

  23. Geng, Y.; Discher, D. E.; Justynska, J.; Schlaad, H. Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): a platform for self-assembling hybrid amphiphiles. Angew. Chem. Int. Ed. 2006, 45, 7578–7581.

    Article  CAS  Google Scholar 

  24. Zupancich, J. A.; Bates, F; S.; Hillmyer, M. A. Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles. Biomacromolecules 2009, 10, 1554–1563.

    Article  CAS  Google Scholar 

  25. Ahmed, F.; Hategan, A.; Discher, D. E.; Discher, B. M. Block copolymer assemblies with cross-link stabilization: from single-component monolayers to bilayer blends with PEO-PLA. Langmuir 2003, 19, 6505–6511.

    Article  CAS  Google Scholar 

  26. Hordyjewicz-Baran, Z.; You, L. C.; Smarsly, B.; Sigel, R.; Schlaad, H. Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 2007, 40, 3901–3903.

    Article  CAS  Google Scholar 

  27. Ma, J. Z.; Gana, C. F.; Xua, Q. N.; Zhou, J. H.; Zhang, J. Amphiphilic copolymer stabilized core-shell structural casein-based emulsion. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 471, 65–72.

    Article  CAS  Google Scholar 

  28. Anderson, C. A.; Jones, A. R.; Briggs, E. M.; Novitsky, E. J.; Kuykendall, D. W.; Sottos, N. R.; Zimmerman, S. C. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. J. Am. Chem. Soc. 2013, 135, 7288–7295.

    Article  CAS  Google Scholar 

  29. Jurin, F. E.; Buron, C. C.; Martin, N.; Filiâtre, C. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition. J. Colloid Interface Sci. 2014, 431, 64–70.

    Article  CAS  Google Scholar 

  30. Shin, S.; Lim, S.; Kim, Y.; Kim, T.; Choi, T. L.; Lee, M. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction. J. Am. Chem. Soc. 2013, 135, 2156–2159.

    Article  CAS  Google Scholar 

  31. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    Article  CAS  Google Scholar 

  32. Huang, M. J.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X. H.; Li, Y. W.; Li, M. X.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W. B.; Yue, K.; Cheng S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348, 424–428.

    Article  CAS  Google Scholar 

  33. Zhu, H.; Chen, P.; Yang, C. F.; Wu, Y. X. Neodymium-based catalyst for the coordination polymerization of butadiene: From fundamental research to industrial application. Macromol. React. Eng. 2015, 9, 453–461.

    Article  CAS  Google Scholar 

  34. Shen, Z. Q.; Song, X. Y.; Xiao, S. X.; Yang, J. P.; Kan, X. L. Coordination copolymerization of butadiene and isoprene with rare-earth chloride-alcohol-aluminum trialkyl catalytic system. Sci. China Ser. B 1982, XXV, 124–136.

    Google Scholar 

  35. Gottlieb, H. E.; Kotlyar, V.; Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62, 7512–7515.

    Article  CAS  Google Scholar 

  36. Panicker, S. S.; Ninan, K. N. Influence of molecular weight on the thermal decomposition of hydroxyl terminated polybutadiene. Thermochimica Acta 1997, 290, 191–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21634002, 51790501 and 51521062) and the Fundamental Research Funds for the Central Universities (Nos. XK1802-2 and XK1802-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhu or Yi-Xian Wu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2808_MOESM1_ESM.pdf

Rapid Self-healing and Strong Adhesive Elastomer via Supramolecular Aggregates from Core-shell Micelles of Silicon Hydroxyl-functionalized cis-Polybutadiene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YY., Zhu, H., Tan, Y. et al. Rapid Self-healing and Strong Adhesive Elastomer via Supramolecular Aggregates from Core-shell Micelles of Silicon Hydroxyl-functionalized cis-Polybutadiene. Chin J Polym Sci 41, 84–94 (2023). https://doi.org/10.1007/s10118-022-2808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2808-z

Keywords

Navigation