Skip to main content
Log in

Thiazole-Flanked Thiazoloisoindigo as a Monomer for Balanced Ambipolar Polymeric Field-effect Transistors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Electron-rich thiophene-flanked thiazoloisoindigo (Th-TzII) has been reported as a building block for ambipolar polymeric field-effect transistors however with preferable hole transport. Here, we report that by using an electron deficient thiazole as the flanked moiety, the corresponding thiazoloisoindigo (Tz-TzII) can still be synthesized, although in a more sinuous way. Theoretical calculation and experimental results demonstrate that Tz-TzII is more electron-deficient than Th-TzII, and the corresponding polymer P(TzII-Tz-T-Tz) exhibits high and balanced hole/electron mobility of 0.70/0.64 cm2·V−1·s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24, 3087–3106.

    Article  CAS  Google Scholar 

  2. Su, H.-L.; Sredojevic, D. N.; Bronstein, H.; Marks, T. J.; Schroeder, B. C.; Al-Hashimi, M. Bithiazole: an intriguing electron-deficient building for plastic electronic applications. Macromol. Rapid Commun. 2017, 38, 1600610.

    Article  CAS  Google Scholar 

  3. Usta, H.; Sheets, W. C.; Denti, M.; Generali, G.; Capelli, R.; Lu, S.; Yu, X.; Muccini, M.; Facchetti, A. Perfluoroalkyl-functionalized thiazole-thiophene oligomers as n-channel semiconductors in organic field-effect and light-emitting transistors. Chem. Mater. 2014, 26, 6542–6556.

    Article  CAS  Google Scholar 

  4. Li, W.; Katz, H. E.; Lovinger, A. J.; Laquindanum, J. G. Field-effect transistors based on thiophene hexamer analogues with diminished electron donor strength. Chem. Mater. 1999, 11, 458–465.

    Article  CAS  Google Scholar 

  5. Ando, S.; Murakami, R.; Nishida, J. I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. n-Type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups. J. Am. Chem. Soc. 2005, 127, 14996–14997.

    Article  CAS  Google Scholar 

  6. Mamada, M.; Nishida, J. I.; Kumaki, D.; Tokito, S.; Yamashita, Y. n-Type organic field-effect transistors with high electron mobilities based on thiazole-thiazolothiazole conjugated molecules. Chem. Mater. 2007, 19, 5404–5409.

    Article  CAS  Google Scholar 

  7. Kim, D. H.; Lee, B.-L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J.-I.; Han, K.-M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J. Am. Chem. Soc. 2009, 131, 6124–6132.

    Article  CAS  Google Scholar 

  8. Lee, J.; Chung, J. W.; Kim, D. H.; Lee, B. L.; Park, J.-I.; Lee, S.; Häusermann, R.; Batlogg, B.; Lee, S. S.; Choi, I.; Kim, I. W.; Kang, M. S. Thin films of highly planar semiconductor polymers exhibiting band-like transport at room temperature. J. Am. Chem. Soc. 2015, 137, 7990–7993.

    Article  CAS  Google Scholar 

  9. Guo, C.; Quinn, J.; Sun, B.; Li, Y. Dramatically different charge transport properties of bisthienyl diketopyrrolopyrrole-bithiazole copolymers synthesized via two direct (hetero)arylation polymerization routes. Polym. Chem. 2016, 7, 4515–4524.

    Article  CAS  Google Scholar 

  10. Buckley, C.; Thomas, S.; McBride, M.; Yuan, Z.; Zhang, G.; Bredas, J.-L.; Reichmanis, E. Synergistic use of bithiazole and pyridinyl substitution for effective electron transport polymer materials. Chem. Mater. 2019, 31, 3957–3966.

    Article  CAS  Google Scholar 

  11. Li, P.; Wang, H.; Ma, L.; Xu, L.; Xiao, F.; Yi, Z.; Liu, Y.; Wang, S. An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors. Sci. Chin. Chem. 2016, 59, 679–683.

    Article  CAS  Google Scholar 

  12. Yuan, Z.; Buckley, C.; Thomas, S.; Zhang, G.; Bargigia, I.; Wang, G.; Fu, B.; Silva, C.; Brédas, J. L.; Reichmanis, E. A thiazolenaphthalene diimide based n-channel donor-acceptor conjugated polymer. Macromolecules 2018, 51, 7320–7328.

    Article  CAS  Google Scholar 

  13. Li, W.; Roelofs, W. S. C.; Turbiez, M.; Wienk, M. M.; Janssen, R. A. J. Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor. Adv. Mater. 2014, 26, 3304–3309.

    Article  CAS  Google Scholar 

  14. Zhang, A.; Xiao, C.; Meng, D.; Wang, Q.; Zhang, X.; Hu, W.; Zhan, X.; Wang, Z.; Janssen, R. A. J.; Li, W. Conjugated polymers with deep LUMO levels for field-effect transistors and polymer-polymer solar cells. J. Mater. Chem. C 2015, 3, 8255–8261.

    Article  CAS  Google Scholar 

  15. Yuan, Z.; Fu, B.; Thomas, S.; Zhang, S.; DeLuca, G.; Chang, R.; Lopez, L.; Fares, C.; Zhang, G.; Bredas, J. L.; Reichmanis, E. Unipolar electron transport polymers: a thiazole based all-electron acceptor approach. Chem. Mater. 2016, 28, 6045–6049.

    Article  CAS  Google Scholar 

  16. Ma, J.; Liu, Z.; Yao, J.; Wang, Z.; Zhang, G.; Zhang, X.; Zhang, D. Improving ambipolar semiconducting properties of thiazole-flanked diketopyrrolopyrrole-based terpolymers by incorporating urea groups in the side-chains. Macromolecules 2018, 51, 6003–6010.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T. High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers. Adv. Mater. 2018, 30, 1707164.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T. Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation. Angew. Chem. Int. Ed. 2019, 58, 11893–11902.

    Article  CAS  Google Scholar 

  19. Wang, Q.; Lenjani, S. V.; Dolynchuk, O.; Scaccabarozzi, A. D.; Komber, H.; Guo, Y.; Günther, F.; Gemming, S.; Magerle, R.; Caironi, M.; Sommer, M. Electron mobility of diketopyrrolopyrrole copolymers is robust against homocoupling defects. Chem. Mater. 2021, 33, 668–677.

    Article  CAS  Google Scholar 

  20. Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Lan, Z.; Pei, J.; Wan, X. Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers. Chem. Eur. J. 2018, 24, 9807–9811.

    Article  CAS  Google Scholar 

  21. Li, C.; Zhang, H.; Mirie, S.; Peng, J.; Cai, M.; Wang, X.; Lan, Z.; Wan, X. A new approach to thiazoloisoindigo and derivatives using a lithium tetramethylpiperidine promoted cyclization to thiazoloisatin. Org. Chem. Front. 2018, 5, 442–446.

    Article  CAS  Google Scholar 

  22. Li, C. C.; Xiong, M.; Peng, J. W.; Wang, J. Y.; Zhang, H. R.; Mu, Y. B.; Pei, J.; Wan, X. B. Finely tuned electron/hole transport preference of thiazoloisoindigo-based conjugated polymers by incorporation of heavy chalcogenophenes. Chinese J. Polym. Sci. 2021, 39, 838–848.

    Article  CAS  Google Scholar 

  23. Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605–2612.

    Article  CAS  Google Scholar 

  24. Karpov, Y.; Zhao, W.; Raguzin, I.; Beryozkina, T.; Bakulev, V.; Al-Hussein, M.; Häußler, L.; Stamm, M.; Voit, B.; Facchetti, A.; Tkachov, R.; Kiriy, A. Influence of semiconductor thickness and molecular weight on the charge transport of a naphthalenediimide-based copolymer in thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 12478–12487.

    Article  CAS  Google Scholar 

  25. Verilhac, J. M.; Pokrop, R.; LeBlevennec, G.; Kulszewicz-Bajer, I.; Buga, K.; Zagorska, M.; Sadki, S.; Pron, A. Molecular weight dependent charge carrier mobility in poly(3,3″-dioctyl-2,2′:5′,2″-terthiophene). J. Phys. Chem. B 2006, 110, 13305–13309.

    Article  CAS  Google Scholar 

  26. Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Nos. 22075105 and 22102086) and the start-up funding from Jianghan University. We thank Prof. Chunming Yang and Prof. Xichang Bao and Shanghai Synchrotron Radiation Facility for GIWAXS test and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Wen Li, You-Bing Mu, Jian Pei or Xiao-Bo Wan.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, SY., Li, QY., Li, BW. et al. Thiazole-Flanked Thiazoloisoindigo as a Monomer for Balanced Ambipolar Polymeric Field-effect Transistors. Chin J Polym Sci 40, 1131–1140 (2022). https://doi.org/10.1007/s10118-022-2731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2731-3

Keywords

Navigation