Skip to main content
Log in

Polymer Features in Crystallization

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This review firstly gives an overview on the importance of crystallization in natural and synthetic polymers/macromolecules. Then it introduces the typical features that have been raised by chain-like macromolecules in crystallization, including anisotropic interactions in the thermodynamic driving forces, chain folding in the crystal morphologies, chemical confinement in the copolymer crystallization, and mechanical enhancement in the stretching processes. Four features separately cover the thermodynamics and the kinetics of polymer crystallization, as well as the crystallinity and the mechanical properties of semicrystalline polymers. The review ends up with how these features enhance specific functions of crystalline polymers, which demonstrates polymer crystallization as a challenging yet promising field in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holme, D. A description of a property of caoutchouc, or Indian rubber; with some reflections on the cause of the elasticity of this substance. Philos. Mag. 1806, 24, 39–43.

    Article  Google Scholar 

  2. https://www.thoughtco.com/history-of-plastics-1992322

  3. Katz, J. R. Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 1925, 19, 410–416.

    Article  Google Scholar 

  4. Mark, H.; von Susich, G. Ueber geregelte Mizellarstrukturen von Kautschuk. Kolloid Z. 1928, 46, 11–21.

    Article  CAS  Google Scholar 

  5. Staudinger, H. Über polymerisation. Ber. dtsch. Chem. Ges. A/B 1920, 53, 1073–1085.

    Article  Google Scholar 

  6. Astbury, W. T.; Woods, H. J. The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 1930, 126, 913–914.

    Article  CAS  Google Scholar 

  7. https://www.thoughtco.com/wallace-carothers-history-of-nylon-1992197

  8. Storks, K. H. An electron diffraction examination of some linear high polymers. J. Am. Chem. Soc. 1938, 60, 1753–1761.

    Article  CAS  Google Scholar 

  9. Abitz, W.; Gerngross, O.; Herrmann, K. Zur rontgenographischen strukturforschung des gelatinemicells. Naturwissenschaften 1930, 18, 754–755.

    Article  CAS  Google Scholar 

  10. Keller, A. A note on single crystals in polymers: evidence for a folded chain configuration. Philos. Mag. 1957, 2, 1171–1175.

    Article  CAS  Google Scholar 

  11. Geil, P. H. Polymer Single Crystals. Interscience Publishers, New York, 1963.

    Google Scholar 

  12. Wunderlich, B. Macromolecular physics. Vol. 1: Crystal structure, morphology, defects. Academic, New York, 1973.

    Google Scholar 

  13. Wunderlich, B. Macromolecular Physics. Vol. 2: Crystal nucleation, growth, annealing. Academic Press, New York, 1976.

    Google Scholar 

  14. Tadokoro, H. Structure of crystalline polymers. Wiley-Interscience, New York, 1979.

    Google Scholar 

  15. Wunderlich, B. Macromolecular physics. Vol. 3: Crystal Melting. Academic, New York, 1980.

    Google Scholar 

  16. Bassett, D. C. Principles of polymer morphology. Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  17. Woodward, A. E. Atlas of polymer morphology. Hanser, Munich, 1989.

    Google Scholar 

  18. Schultz, J. M. Polymer crystallization. Oxford University Press, Oxford, 2001.

    Google Scholar 

  19. Mandelkern, L. Crystallization of polymers. Vol. 1: Equilibrium concepts. Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

  20. Mandelkern, L. Crystallization of polymers. Vol. 2: Kinetics and mechanisms. Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

  21. Cheng, S. Z. D. Phase transitions in polymers, the role of metastable states. Elsevier, Berlin, 2008.

    Google Scholar 

  22. de Rosa, C.; Auriemma, F. Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals. John Wiley & Sons, Hoboken, 2014.

    Google Scholar 

  23. Hu, W. B. Principles of polymer crystallization (in Chinese). Chemical Technology Publisher, Beijing, 2015.

    Google Scholar 

  24. Flory, P. J. Principle of polymer chemistry. Cornell University Press, Ithaca, 1953.

    Google Scholar 

  25. de Gennes, P. G. Scaling concept in polymer physics. Cornell University, Ithaca, 1979.

    Google Scholar 

  26. Doi, M.; Edwards, S. F. The theory of polymer dynamics. Clarendon Press, Oxford, 1986.

    Google Scholar 

  27. Rubinstein, M.; Colby, R. H. Polymer physics. Oxford University Press, Oxford, 2003.

    Google Scholar 

  28. Sperling, L. H. Introduction to Physical Polymer Science. Wiley-Interscience, New York, 1986.

    Google Scholar 

  29. Gedde, U. W. Polymer physics. Springer, Dordrecht, 1995.

    Google Scholar 

  30. Strobl, G. The physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin, 1996.

    Book  Google Scholar 

  31. Hu, W. B. Polymer physics: a molecular approach. Springer-Verlag, Vienna, 2013.

    Book  Google Scholar 

  32. https://www.webofscience.com/wos/alldb/basic-search

  33. Li, C. Y. The rise of semicrystalline polymers and why are they still interesting. Polymer 2020, 211, 123150.

    Article  CAS  Google Scholar 

  34. Hu, W. B. Growth rate equations of lamellar polymer crystals. Polym. Cryst. 2018, 1, e25831.

    Google Scholar 

  35. Meyer, K. H.; Mark, H. Über den Bau des krystallisierten Anteils der Cellulose. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1928, 61, 593–614.

    Article  Google Scholar 

  36. Natta, G.; Corradini, P. Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl. 1960, 15, 40–67.

    Article  CAS  Google Scholar 

  37. Hu, W. B.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. In: Allegra G. (eds) Interphases and Mesophases in Polymer Crystallization III. Advances in Polymer Science, Vol. 191. Springer, Berlin, Heidelberg, 2005.

    Google Scholar 

  38. Hu, W. B. The melting point of chain polymers. J. Chem. Phys. 2000, 113, 3901–3908.

    Article  CAS  Google Scholar 

  39. Hu, W. B.; Mathot, V. B. F.; Frenkel, D. Lattice model study of the thermodynamic interplay of polymer crystallization and liquidliquid demixing. J. Chem. Phys. 2003, 118, 10343–10348.

    Article  CAS  Google Scholar 

  40. Hu, W. B. Statistical thermodynamics of polymer crystallization. Front. Chem. China 2010, 5, 29–32.

    Article  Google Scholar 

  41. Hu, W. B.; Zha, L. Y. Theoretical Aspects of Polymer Crystallization. In: Mitchell G., Tojeira A. (eds) Controlling the morphology of polymers. Springer, Cham, 2016.

    Google Scholar 

  42. Hu, W. B.; Zha, L. Y. Thermodynamics and kinetics of polymer crystallization. In Polymer morphology. Wiley, New York, 2016.

    Google Scholar 

  43. Hu, W. B.; Mathot, V. B. F. Liquid-liquid demixing in a polymer blend driven solely by the component-selective crystallizability. J. Chem. Phys. 2003, 119, 10953–10957.

    Article  CAS  Google Scholar 

  44. Hu, W. B. Interplay of liquid-liquid demixing and polymer crystallization. In: Hu, W. B.; Shi, A. C. (eds) Understanding soft condensed matter via modeling and computation. World Scientific Publisher, Singapore, 2010. p. 179.

    Chapter  Google Scholar 

  45. Liu, Q.; Gao, H. H.; Zha, L. Y.; Hu, Z. M.; Ma, Y.; Yu, M. H.; Chen, L.; Hu, W. B. Tuning bio-inspired skin-core structure of nascent fiber via interplay of polymer phase transitions. Phys. Chem. Chem. Phys. 2014, 16, 15152–15157.

    Article  CAS  PubMed  Google Scholar 

  46. http://www.biologie.uni-hamburg.de/b-online/e17/cona.htm

  47. Pennings, A. J. Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions. J. Polym. Sci., Part C: Polym. Symp. 1977, 59, 55–86.

    CAS  Google Scholar 

  48. Khoury, F.; Passaglia, E. The morphology of crystalline synthetic polymers, in Treatise on solid state chemistry. N. B. Hannay, Editor, Plenum Press, New York, 1976, Vol. 3, pp: 335–496.

    Chapter  Google Scholar 

  49. Hu, W. B. The physics of polymer chain-folding. Phys. Reps. 2018, 747, 1–50.

    Article  CAS  Google Scholar 

  50. Hu, W. B. Intramolecular Crystal Nucleation. In: Reiter, G.; Strobl G. R. (eds) Progress in understanding of polymer crystallization. Lect. Notes Phys., Vol. 714. Springer, Berlin, 2007.

    Chapter  Google Scholar 

  51. Hu, W. B.; Frenkel, D.; Mathot, V. B. F. Intramolecular nucleation model for polymer crystallization. Macromolecules 2003, 36, 8178–8183.

    Article  CAS  Google Scholar 

  52. Hu, W. B. Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation. Macromolecules 2005, 38, 8712–8718.

    Article  CAS  Google Scholar 

  53. Ren, Y. J.; Ma, A. Q.; Li, J.; Jiang, X. M.; Ma, Y.; Toda, A.; Hu, W. B. Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur. Phys. J. E 2010, 33, 189–202.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, X. M.; Reiter, G.; Hu, W. B. How chain-folding crystal growth determines thermodynamic stability of polymer crystals. J. Phys. Chem. B 2016, 120, 566–571.

    Article  CAS  PubMed  Google Scholar 

  55. Xu, J. J.; Ma, Y.; Hu, W. B.; Rehahn, M.; Reiter, G. Cloning polymer single crystals via self-seeding. Nat. Mater. 2009, 8, 348–353.

    Article  CAS  PubMed  Google Scholar 

  56. Reiter, G. Some unique features of polymer crystallization. Chem. Soc. Rev. 2014, 43, 2055–2065.

    Article  CAS  PubMed  Google Scholar 

  57. Hu, W. B.; Mathot, V. B. F.; Alamo, R. G.; Gao, H. H., Chen, X. Crystallization of Statistical Copolymers. In: Auriemma F., Alfonso G., de Rosa C. (eds) Polymer Crystallization I. Adv. Polym. Sci., Vol. 276. Springer, Cham, 2016.

    Google Scholar 

  58. Ma, Y.; Li, C.; Cai, T.; Li, J.; Hu, W.-B. Role of block junctions in the interplay of phase transitions of two-component polymeric systems. J. Phys. Chem. B 2011, 115, 8853–8857.

    Article  CAS  PubMed  Google Scholar 

  59. Zha, L.; Hu, W. B. Molecular simulations of confined crystallization in microdomains of diblock copolymers. Prog. Polym. Sci. 2016, 54–55, 232–258.

    Article  CAS  Google Scholar 

  60. Michell, M.; Müller, A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54–55, 183–213.

    Article  CAS  Google Scholar 

  61. Liu, G.; Müller, A. J.; Wang, D. Confined crystallization of polymers within nanopores. Acc. Chem. Res. 2021, 54, 3028–3038.

    Article  CAS  PubMed  Google Scholar 

  62. de Gennes, P. G. Weak segregation in molten statistical copolymers. Macromol. Symp. 2003, 191, 7–10.

    Article  CAS  Google Scholar 

  63. Hu, W. B.; Mathot, V. B. F.; Frenkel, D. Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations. Macromolecules 2003, 36, 2165–2175.

    Article  CAS  Google Scholar 

  64. Hu, W. B.; Mathot, V. B. F. Sequence-length segregation during crystallization and melting of a model homogeneous copolymer. Macromolecules 2004, 37, 673–675.

    Article  CAS  Google Scholar 

  65. Tao, H. C.; Gao, F.; Gao, H. H.; Hu, W. B. Free energy change of crystallization in single copolymers. Mol. Phys. 2018, 116, 3020–3026.

    Article  CAS  Google Scholar 

  66. Keating, M. Y.; McCord, E. F. Evaluation of the comonomer distribution in ethylene copolymers using DSC fractionation. Thermochim. Acta 1994, 243, 129–145.

    Article  CAS  Google Scholar 

  67. Müller, A. J.; Arnal, M. L. Thermal fractionation of polymers. Prog. Polym. Sci. 2005, 30, 559–603.

    Article  CAS  Google Scholar 

  68. Reid, B. O.; Vadlamudi, M.; Mamun, A.; Janani, H.; Gao, H. H.; Hu, W. B.; Alamo, R. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 2013, 46, 6485–6497.

    Article  CAS  Google Scholar 

  69. Gao, H. H.; Vadlamudi, M; Alamo, R.; Hu, W. B. Monte Carlo simulations of strong memory effect of crystallization in random copolymers. Macromolecules 2013, 46, 6498–6506.

    Article  CAS  Google Scholar 

  70. Wild, L.; Glöckner, G. Temperature rising elution fractionation. In: Separation techniques thermodynamics liquid crystal polymers. Adv. Polym. Sci., Vol. 98. Springer, Berlin, 1990.

    Chapter  Google Scholar 

  71. Xu, J. T. Feng, L. X. Application of temperature rising elution fractionation in polyolefins. Eur. Polym. J. 2000, 36, 867–878.

    Article  CAS  Google Scholar 

  72. Flory, P. J. Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching. J. Chem. Phys. 1947, 15, 397–408.

    Article  CAS  Google Scholar 

  73. Nie, Y. J.; Gao, H. H.; Wu, Y. X.; Hu, W. B. Thermodynamics of strain-induced crystallization of random copolymers. Soft Matter 2014, 10, 343–347.

    Article  CAS  PubMed  Google Scholar 

  74. Zha, L. Y.; Wu, Y. X.; Hu, W. B. Multi-component thermodynamics of strain-induced polymer crystallization. J. Phys. Chem. B 2016, 120, 6890–6896.

    Article  CAS  PubMed  Google Scholar 

  75. Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev. 2018, 118, 1840–1886.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, S. Q. The tip of iceberg in nonlinear polymer rheology: Entangled liquids are “solids”. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2660–2665.

    Article  CAS  Google Scholar 

  77. Nie, Y. J.; Zhao, Y. F.; Matsuba, G.; Hu, W. B. Shish-Kebab crystallites initiated by shear fracture in bulk polymers. Macromolecules 2018, 51, 480–487.

    Article  CAS  Google Scholar 

  78. Rhoades, A. M.; Gohn, A. M.; Seo, J.; Androsch, R.; Colby, R. H. Sensitivity of polymer crystallization to shear at low and high supercooling of the melt. Macromolecules 2018, 51, 2785–2795.

    Article  CAS  Google Scholar 

  79. Nie, Y. J.; Gao, H. H.; Yu, M. H.; Hu, Z. M.; Reiter, G.; Hu, W. B. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 2013, 54, 3402–3407.

    Article  CAS  Google Scholar 

  80. Nie, Y. J.; Gao, H. H.; Hu, W. B. Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers. Polymer 2014, 55, 1267–1272.

    Article  CAS  Google Scholar 

  81. Men, Y.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91, 095502.

    Article  PubMed  CAS  Google Scholar 

  82. Liu, K.; Song, Y.; Feng, W.; Liu, N. N.; Zhang, W. K.; Zhang, X. Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states. J. Am. Chem. Soc. 2011, 133, 3226–3229.

    Article  CAS  PubMed  Google Scholar 

  83. Porter, D.; Vollrath, F. Silk as a biomimetic ideal for structural polymers. Adv. Mater. 2009, 21, 487–492.

    Article  CAS  Google Scholar 

  84. Smith, P.; Lemstra, P. J.; Pijper, J. P. L.; Kiel, A. M. Ultra-drawing of high molecular weight polyethylene cast from solution. Colloid Polym. Sci. 1981, 259, 1070–1080.

    Article  CAS  Google Scholar 

  85. Sawatari, C.; Matsuo, M. Elastic modulus of polyethylene in the crystal chain direction as measured by X-ray diffraction. Macromolecules 1986, 19, 2036–2040.

    Article  Google Scholar 

  86. Lovinger, A. J. Ferroelectric polymers. Science 1983, 220, 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  87. Wei, J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.

    Article  CAS  Google Scholar 

  88. Katsouras, I.; Asadi, K.; Li, M.; van Driel T. B.; Kjaer, K. S.; Zhao, D.; Lenz, T.; Gu, Y.; Blom, P. W. M.; Damjanovic, D.; Nielsen, M. M.; de Leeuw, D. M. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 2016, 15, 78–84.

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y., Aziguli, H., Zhang, B., Xu, W., Lu, W.; Bernholc, J.; Wang, Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018, 562, 96–100.

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Y.; Zhang, B.; Xu, W.; Haibibu, A.; Han, Z.; Lu, W.; Bernholc, J.; Wang, Q. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 2020, 19, 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  91. Chen, X.; Qin, H.; Qian, X.; Zhu, W.; Li, B.; Zhang, B.; Lu, W.; Li, R.; Zhang, S.; Zhu, L.; Santos, F. D. Bernholc, J.; Zhang, Q. M. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 2022, 375, 1418–1422.

    Article  CAS  PubMed  Google Scholar 

  92. Neese, B.; Chu, B.; Lu, S. G.; Wang, Y.; Furman, E.; Zhang, Q. M. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008, 321, 821–823.

    Article  CAS  PubMed  Google Scholar 

  93. Qian, X.; Han, D.; Zheng, L.; Chen, J.; Tyagi, M.; Li, Q.; Du, F.; Zheng, S.; Huang, X.; Zhang, S.; Shi, J.; Huang, H.; Shi, X.; Chen, J.; Qin, H.; Bernholc, J.; Chen, X.; Chen, L.; Hong, L.; Zhang, Q. M. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 2021, 600, 664–669.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, R.; Fan, S.; Xiao, Y.; Gao, E.; Jiang, N.; Li, Y.; Mou, L.; Shen, Y.; Zhao, W.; Li, S. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 2019, 366, 216–221.

    Article  CAS  PubMed  Google Scholar 

  95. Greibich, F.; Schwödiauer, R.; Mao, G.; Wirthl, D.; Drack, M.; Baumgartner, R.; Kogler, A.; Stadlbauer, J.; Bauer, S.; Arnold, N.; Kaltenbrunner, M. Elastocaloric heat pump with specific cooling power of 20. 9 W g−1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 2021, 6, 260–267.

    Article  CAS  Google Scholar 

  96. Henry, A.; Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 2008, 101, 235502.

    Article  PubMed  CAS  Google Scholar 

  97. Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotech. 2010, 5, 251–255.

    Article  CAS  Google Scholar 

  98. Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; Li, X.; Chen, G. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Song, H.; Fang, Z.; Jin, B.; Pan, P.; Zhao, Q.; Xie, T. Synergetic chemical and physical programming for reversible shape memory effect in a dynamic covalent network with two crystalline phases. ACS Macro Lett. 2019, 8, 682–686.

    Article  PubMed  CAS  Google Scholar 

  100. Lei, C.; Xu, R.; Tian, Z.; Huang, H.; Xie, J.; Zhu, X. Stretching-induced uniform micropores formation: an in situ SAXS/WAXS study. Macromolecules 2018, 51, 3433–3442.

    Article  CAS  Google Scholar 

  101. Kang, G. D.; Cao, Y. M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes — a review. J. Membr. Sci. 2014, 463, 145–165.

    Article  CAS  Google Scholar 

  102. Wang, H.; Keum, J. K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 2009, 323, 757–760.

    Article  CAS  PubMed  Google Scholar 

  103. Cheng, S.; Smith, D. M.; Li, C. Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes. Macromolecules 2014, 47, 3978–3986.

    Article  CAS  Google Scholar 

  104. Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J.; Wienk, M. M.; Kroon, J. M.; Michels, M. A.; Janssen, R. A. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583.

    Article  CAS  PubMed  Google Scholar 

  105. Ding, Z.; Liu, D.; Zhao, K.; Han, Y. Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films. Macromolecules 2021, 54, 3907–3926.

    Article  CAS  Google Scholar 

  106. Sin, L. T.; Rahmat, A. R.; Rahman, W. A. Polylactic acid: PLA biopolymer technology and applications. Elsevier, Oxford, 2012.

    Google Scholar 

  107. Hartl, F. U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332.

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J. F.; Zha, L. Y.; Hu, W. B. Effect of solvent selectivity on crystallization-driven fibril growth kinetics of diblock copolymers. Polymer 2018, 138, 359–362.

    Article  CAS  Google Scholar 

  109. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P. H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M. S.; Quintero-Monzon, O.; Scannevin, R. H.; Moore Arnold, H.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R. M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537, 50–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Ms. Wen Luo to help the literature count in Web of Science! This work was financially supported by the National Natural Science Foundation of China (No. 21734005) and National Key R&D Program of China (No. 2020YFA0711504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bing Hu.

Additional information

Biography

Wen-Bing Hu, graduated in 1989, Ph. D in 1995, and Lecturer during 1995–2000 at Fudan University; Postdocs during 1998–2003 at Freiburg University, University of Tennessee and FOM Institute-Amolf; Professor since 2004 at Nanjing University; awarded Outstanding Youth Funding of NNSFC in 2008, and APS Fellow in 2020; now associate editor of Acta Polymerica Sinica. Research interests are mainly in polymer physics, specifically in polymer crystallization. Author of the books “Introduction to Polymer Physics” (Chinese, Science Publisher, Beijing, 2011), “Polymer Physics: A Molecular Approach” (English, Springer, Wien, 2013), “Principles of Polymer Crystallization” (Chinese, Chemical Technology Publisher, Beijing, 2015), and over 100 total publications of book chapters, academic reviews and research articles.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, WB. Polymer Features in Crystallization. Chin J Polym Sci 40, 545–555 (2022). https://doi.org/10.1007/s10118-022-2710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2710-8

Keywords

Navigation