Skip to main content
Log in

Block Copolymer Networks Composed of Poly(ε-caprolactone) and Polyethylene with Triple Shape Memory Properties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported a novel synthesis of block copolymer networks composed of poly(ε-caprolactone) (PCL) and polyethylene (PE) via the co-hydrolysis and condensation of α, ω)-ditriethoxylsilane-terminated PCL and PE telechelics. First, α, ω)-dihydroxyl-terminated PCL and PE telechelics were synthesized via the ring-opening polymerization of ε-caprolactone and the ring-opening metathesis polymerization of cyclooctene followed by hydrogenation of polycyclooctene. Both α, ω)-ditriethoxylsilane-terminated PCL and PE telechelics were obtained via in situ reaction of α, ω-dihydroxyl-terminated PCL and PE telechelics with 3-isocyanatopropyltriethoxysilane. The formation of networks was evidenced by the solubility and rheological tests. It was found that the block copolymer networks were microphase-separated. The PCL and PE blocks still preserved the crystallinity. Owing to the formation of crosslinked networks, the materials displayed shape memory properties. More importantly, the combination of PCL with PE resulted that the block copolymer networks had the triple shape memory properties, which can be triggered with the melting and crystallization of PCL and PE blocks. The results reported in this work demonstrated that triple shape memory polymers could be prepared via the formation of block copolymer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602–1617.

    Article  CAS  Google Scholar 

  2. Nagarajan, R.; Ganesh, K. Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles. Macromolecules 1989, 22, 4312–4325.

    Article  CAS  Google Scholar 

  3. Hajduk, D. A.; Kossuth, M. B.; Hillmyer, M. A.; Bates, F. S. Complex phase behavior in aqueous solutions of poly(ethylene oxide)-poly(ethylethylene) block copolymers. J. Phys. Chem. B 1998, 102, 4269–4276.

    Article  CAS  Google Scholar 

  4. Lodge, T. P.; Pudil, B.; Hanley, K. J. The full phase behavior for block copolymers in solvents of varying selectivity. Macromolecules 2002, 35, 4707–4717.

    Article  CAS  Google Scholar 

  5. Alexandridis, P.; Lindman, B. Amphiphilic block copolymers: self-assembly and applications. Elsevier Press: Amsterdam, 2000.

    Google Scholar 

  6. Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32–38.

    Article  CAS  Google Scholar 

  7. Ding, H.; Zhao, B.; Mei, H.; Li, L.; Zheng, S. Toughening of epoxy thermosets with polystyrene-block-polybutadiene-block-polystyrene triblock copolymer via formation of nanostructures. Polym. Eng. Sci. 2019, 59, 2387–2396.

    Article  CAS  Google Scholar 

  8. Hamley, I. W. Block copolymers in solution: fundamentals and applications. John Wiley & Sons, Ltd: West Sussex, England, 2005.

    Book  Google Scholar 

  9. Mohamed, M. G.; Atayde, E. C.; Matsagar, B. M.; Na, J.; Yamauchi, Y.; Wu, K. C. W.; Kuo, S. W. Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J. Taiwan Inst. Chem. Eng. 2020, 112, 180–192.

    Article  CAS  Google Scholar 

  10. Hung, W. S.; Ahmed, M. M. M.; Mohamed, M. G.; Kuo, S. W. Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone-b-ethylene oxide-b-caprolactone) triblock copolymer. J. Polym. Res. 2020, 27, 173.

    Article  CAS  Google Scholar 

  11. Pan, C. T.; Wang, S. Y.; Yen, C. K.; Zeng, S. W.; Kumur, A.; Liang, S. S.; Liu, Z. H.; Wen, Z. H.; Mohamed, M. G.; Kaushik, A. C.; Chien, S. T.; Shiue, Y. L.; Kuo, S. W. Fabrication of biodegradable poly(caprolactone) spherical-microcarriers for arterial embolization. J. Nanosci. Nanotechnol. 2020, 20, 5162–5174.

    Article  PubMed  Google Scholar 

  12. Mohamed, M. G.; Hung, W. S.; El-Mahdy, A. F. M.; Ahmed, M. M. M.; Dai, L.; Chen, T.; Kuo, S. W. High-molecular-weight PLA-b-PEO-b-PLA triblock copolymer templated large mesoporous carbons for supercapacitors and CO2 capture. Polymers 2020, 12, 1193.

    Article  CAS  PubMed Central  Google Scholar 

  13. Hadjichristidis, N.; Pispas, S.; Floudas, G., Block copolymers: synthetic strategies, physical properties, and applications. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2003.

    Google Scholar 

  14. Jia, Z. F.; Wong, L.; Davis, T. P.; Bulmus, V. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromolecules 2008, 9, 3106–3113.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Z. G.; Guo, L. M.; Wang, Y. Isoporous membranes with gradient porosity by selective swelling of UV-crosslinked block copolymers. J. Membr. Sci. 2015, 476, 449–456.

    Article  CAS  Google Scholar 

  16. He, F. G.; Wang, S. P.; Yuan, D.; Weng, Q.; Chen, P.; Chen, X. B.; An, Z. W. Crosslinked poly(arylene ether sulfone) block copolymers containing quinoxaline crosslinkage and pendant butanesulfonic acid groups as proton exchange membranes. Int. J. Hydrogen Energy 2020, 45, 25262–25275.

    Article  CAS  Google Scholar 

  17. Cong, H.; Li, J.; Li, L.; Zheng, S. Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone)-block-poly(N-isopropylacrylamide) triblock copolymers. Eur. Polym. J. 2014, 61, 23–32.

    Article  CAS  Google Scholar 

  18. Zheng, Q.; Zheng, S. From poly(N-isopropylacrylamide)-block-poly(ethylene oxide)-block-poly(N-isopropylacrylamide) triblock copolymer to poly(N-isopropylacrylamide)-block-poly(ethylene oxide) hydrogels: synthesis and rapid deswelling and reswelling behavior of hydrogels. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1717–1727.

    Article  CAS  Google Scholar 

  19. Li, J.; Cong, H.; Li, L.; Zheng, S. Thermoresponse improvement of poly(N-isopropylacrylamide) hydrogels via formation of poly(sodium p-styrenesulfonate) nanophases. ACS Appl. Mater. Interfaces 2014, 6, 13677–13687.

    Article  CAS  PubMed  Google Scholar 

  20. Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057.

    Article  CAS  Google Scholar 

  21. Hu, J. L.; Zhu, Y.; Huang, H. H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 0012, 37, 1720–1763.

    Article  Google Scholar 

  22. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120.

    Article  Google Scholar 

  23. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, C.; Qin, H.; Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558.

    Article  CAS  Google Scholar 

  25. Mather, P. T.; Luo, X. F.; Rousseau, I. A. Shape memory polymer research. Ann. Rev. Mater. Res. 2009, 39, 445–471.

    Article  CAS  Google Scholar 

  26. Xu, S.; Chang, P.; Zhao, B.; Adeel, M.; Zheng, S. Formation of poly(t-caprolactone) networks via supramolecular hydrogen bonding interactions. Chinese J. Polym. Sci. 2019, 37, 197–207.

    Article  CAS  Google Scholar 

  27. Chang, P.; Xu, S.; Zhao, B.; Zheng, S. A design of shape memory networks of poly(ε-caprolactone)s via POSS-POSS interactions. Polym. Adv. Technol. 2019, 30, 713–725.

    Article  CAS  Google Scholar 

  28. Chen, S. J.; Hu, J. L.; Yuen, C. W.; Chan, L. K.; Zhuo, H. T. Triple shape memory effect in multiple crystalline polyurethanes. Polym. Adv. Technol. 2010, 21, 377–380.

    Article  CAS  Google Scholar 

  29. Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20, 3335–3345.

    Article  CAS  Google Scholar 

  30. Wang, Z. W.; Zhao, J.; Chen, M.; Yang, M. H.; Tang, L. Y.; Dang, Z. M.; Chen, F. H.; Huang, M. M.; Dong, X. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 20051–20059.

    Article  CAS  PubMed  Google Scholar 

  31. Kolesov, I.; Dolynchuk, O.; Borreck, S.; Radusch, H. J. Morphology-controlled multiple one- and two-way shape-memory behavior of cross-linked polyethylene/poly(ε-caprolactone) blends. Polym. Adv. Technol. 2014, 25, 1315–1322.

    Article  CAS  Google Scholar 

  32. Zhang, Z. X.; Wei, X.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Gao, X. l. Triple-shape memory materials based on cross-linked poly(ethylene vinyl acetate) and poly(ε-caprolactone). Ind. Eng. Chem. Res. 2016, 55, 12232–12241.

    Article  CAS  Google Scholar 

  33. Khademeh Molavi, F.; Ghasemi, I.; Messori, M.; Esfandeh, M. Nanocomposites based on poly(L-lactide)/poly(ε-caprolactone) blends with triple-shape memory behavior: effect of the incorporation of graphene nanoplatelets (GNps). Compos. Sci. Technol. 2017, 151, 219–227.

    Article  CAS  Google Scholar 

  34. Molavi, F. K.; Ghasemi, I.; Messori, M.; Esfandeh, M. Design and characterization of novel potentially biodegradable triple-shape memory polymers based on immiscible poly(L-lactide)/poly(ε-caprolactone) blends. J. Polym. Environ. 2019, 27, 632–642.

    Article  CAS  Google Scholar 

  35. Maimaitiming, A.; Zhang, M. J.; Tan, H. R.; Wang, M. L.; Zhang, M. X.; Hu, J. T.; Xing, Z.; Wu, G. Z. High-strength triple shape memory elastomers from radiation-vulcanized polyolefin elastomer/polypropylene blends. ACS Appl. Polym. Mater. 2019, 1, 1735–1748.

    Article  CAS  Google Scholar 

  36. Qi, X. M.; Dong, Y. B.; Islam, M. Z.; Zhu, Y. F.; Fu, Y. Q.; Fu, S. Y. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos. Sci. Technol. 2021, 203, 108609.

    Article  CAS  Google Scholar 

  37. Zhao, J.; Chen, M.; Wang, X. Y.; Zhao, X. D.; Wang, Z. W.; Dang, Z. M.; Ma, L.; Hu, G. H.; Chen, F. H. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 2013, 5, 5550–5556.

    Article  CAS  PubMed  Google Scholar 

  38. Ji, F. C.; Liu, X. D.; Lin, C. H.; Zhou, Y.; Dong, L.; Xu, S. B.; Sheng, D. K.; Yang, Y. M. Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol. Mater. Eng. 2019, 304, 1800528.

    Article  Google Scholar 

  39. Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. B. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design. J. Am. Chem. Soc. 2017, 139, 14881–14884.

    Article  CAS  PubMed  Google Scholar 

  40. Tretbar, C. A.; Neal, J. A.; Guan, Z. B. Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc. 2019, 141, 16595–16599.

    Article  CAS  PubMed  Google Scholar 

  41. Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Crystallization of ε-caprolactone blocks within a crosslinked microdomain structure of poly(e-caprolactone)-block-polybutadiene. Polymer 1997, 38, 2711–2718.

    Article  CAS  Google Scholar 

  42. Kavesh, S.; Schultz, J. M. Lamellar and interlamellar structure in melt-crystallized polyethylene. I. Degree of crystallinity, atomic positions, particle size, and lattice disorder of the first and second kinds. J. Polym. Sci., Part A: Polym. Chem. 1970, 8, 243–276.

    Article  CAS  Google Scholar 

  43. Lecommandoux, S.; Borsali, R.; Schappacher, M.; Deffieux, A.; Narayaman, T.; Rochas, C. Microphase separation of linear and cyclic block copolymers poly(styrene-b-isoprene): SAXS experiments. Macromolecules 2004, 37, 1843–1888.

    Article  CAS  Google Scholar 

  44. Stegelmeier, C.; Exner, A.; Hauschild, S.; Filiz, V.; Perlich, J.; Roth, S. V.; Abetz, V.; Forster, S. Evaporation-induced block copolymer self-assembly into membranes studied by in situ synchrotron SAXS. Macromolecules 2015, 48, 1524–1530.

    Article  CAS  Google Scholar 

  45. Dobrosielska, K.; Wakao, S.; Takano, A.; Matsushita, Y. Nanophase-separated structures of AB block copolymer/C homopolymer blends with complementary hydrogen-bonding interactions. Macromolecules 2008, 41, 7695–7698.

    Article  CAS  Google Scholar 

  46. La, Y.; An, T. H.; Shin, T. J.; Park, C.; Kim, K. T. A morphological transition of inverse mesophases of a branched-linear block copolymer guided by using cosolvents. Angew. Chem. 2015, 54, 10483–10487.

    Article  CAS  Google Scholar 

  47. Soto, A. P.; Gilroy, J. B.; Winnik, M. A.; Manners, I. Pointed-oval-shaped micelles from crystalline-coil block copolymers by crystallization-driven living self-assembly. Angew. Chem. 2010, 49, 8220–8223.

    Article  Google Scholar 

  48. Gadt, T.; Ieong, N. S.; Cambridge, G.; Winnik, M. A.; Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 2009, 8, 144–150.

    Article  PubMed  Google Scholar 

  49. Qian, J.; Lu, Y.; Chia, A.; Zhang, M.; Rupar, P. A.; Gunari, N.; Walker, G. C.; Cambridge, G.; He, F.; Guerin, G.; Manners, I.; Winnik, M. A. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 2013, 7, 3754–3766.

    Article  CAS  PubMed  Google Scholar 

  50. Gädt, T.; Schacher, F. H.; McGrath, N.; Winnik, M. A.; Manners, I. Probing the scope of crystallization-driven living self-assembly: studies of diblock copolymer micelles with a polyisoprene corona and a crystalline poly(ferrocenyldiethylsilane) core-forming metalloblock. Macromolecules 2011, 44, 3777–3786.

    Article  Google Scholar 

  51. Gilroy, J. B.; Rupar, P. A.; Whittell, G. R.; Chabanne, L.; Terrill, N. J.; Winnik, M. A.; Manners, I.; Richardson, R. M. Probing the structure of the crystalline core of field-aligned, monodisperse, cylindrical polyisoprene-block-polyferrocenylsilane micelles in solution using synchrotron small- and wide-angle X-ray scattering. J. Am. Chem. Soc. 2011, 133, 17056–17062.

    Article  CAS  PubMed  Google Scholar 

  52. Guerin, G.; Rupar, P.; Molev, G.; Manners, I.; Jinnai, H.; Winnik, M. A. Lateral growth of 1D core-crystalline micelles upon annealing in solution. Macromolecules 2016, 49, 7004–7014.

    Article  CAS  Google Scholar 

  53. Qiu, H.; Du, V. A.; Winnik, M. A.; Manners, I. Branched cylindrical micelles via crystallization-driven self-assembly. J. Am. Chem. Soc. 2013, 135, 17739–17742.

    Article  CAS  PubMed  Google Scholar 

  54. Gilroy, J. B.; Gadt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566–570.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007, 317, 644–7.

    Article  CAS  PubMed  Google Scholar 

  56. Xu, S.; Zhang, C.; Li, L.; Zheng, S. Polystyrene-block-polyethylene-block-polystyrene triblock copolymers: synthesis and crystallization-driven self-assembly behavior. Polymer 2017, 128, 1–11.

    Article  CAS  Google Scholar 

  57. Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermdynamics of fusion of poly-β-propriolactone and poly(ε-caprolactone): comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8, 449–463.

    Article  CAS  Google Scholar 

  58. Wunderlich, B. Thermal analysis. Academic Press: New York, 1990.

    Book  Google Scholar 

  59. Nitta, K. H.; Ishiburo, T. Ultimate tensile behavior of linear polyethylene solids. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2018–2026.

    Article  CAS  Google Scholar 

  60. Haward, R. N. Strain hardening of high density polyethylene. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 1090–1099.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the National Natural Science Foundation of China for the financial supports of this work (Nos. 51973113, 51133003 and 21774078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, H., Zhao, B., Gao, Y. et al. Block Copolymer Networks Composed of Poly(ε-caprolactone) and Polyethylene with Triple Shape Memory Properties. Chin J Polym Sci 40, 185–196 (2022). https://doi.org/10.1007/s10118-022-2652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2652-1

Keywords

Navigation