Skip to main content

Advertisement

Log in

A Non-isocyanate Route to Poly(ester urethane) with High Molecular Weight: Synthesis and Effect of Chemical Structures of Polyester-diol

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of non-isocyanate linear high molecular weight poly(ester urethane)s (PETUs) were prepared through an environmentally-friendly route based on dimethyl carbonate, 1,6-hexanediol and 1,6-hexanediamine. In this route, the polyurethane diol was first prepared by the reaction between bis-1,6-hexamethylencarbamate (BHC) and 1,6-hexanediol. A series of polyester soft segments of polyurethane have been synthesized from the polycondensation of adipic acid and different diols, including butanediol, hexanediol, octanediol and decanediol. The subsequent polycondensation of polyurethane diol and polyester diol led to linear PETUs. The resultant polymers were characterized by GPC, FTIR, 1H-NMR, 13C-NMR, DSC, WAXD, TGA and tensile test. The results indicated that PETUs possess weight-average molecular weights higher than 1×105 and the tensile strength as high as 10 MPa. The thermal properties, crystallization behavior, microphase separation behavior and morphology were studied by DSC and AFM, and the results indicated that the degree of phase separation was affected by two factors, the crystallization and hydrogen bonding interaction between soft segment and hard segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pérez-Sena, W. Y.; Cai, X.; Kebir, N.; Vernières-Hassimi, L.; Serra, C.; Salmi, T.; Leveneur, S. Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: a kinetic and thermal study. Chem. Eng. J. 2018, 346, 271–280.

    Article  Google Scholar 

  2. Wu, P.; Cheng, H.; Wang, X.; Shi, R.; Zhang, C.; Arai, M.; Zhao, F. A self-healing and recyclable polyurethane-urea Diels-Alder adduct synthesized from carbon dioxide and furfuryl amine. Green Chem. 2021, 23, 552–560.

    Article  CAS  Google Scholar 

  3. Dechent, S. E.; Kleij, A. W.; Luinstra, G. A. Fully bio-derived CO2 polymers for non-isocyanate based polyurethane synthesis. Green Chem. 2020, 22, 969–978.

    Article  CAS  Google Scholar 

  4. Ma, S.; Liu, C.; Sablong, R. J.; Noordover, B. A.; Hensen, E. J.; van Benthem, R. A.; Koning, C. E. Catalysts for isocyanate-free polyurea synthesis: mechanism and application. ACS Catal. 2016, 6, 6883–6891.

    Article  CAS  Google Scholar 

  5. Pronoitis, C.; Hakkarainen, M.; Odelius, K. Solubility-governed architectural design of polyhydroxyurethane-graft-poly(ε-caprolactone) copolymers. Polym. Chem. 2021, 12, 196–208.

    Article  CAS  Google Scholar 

  6. Ghasemlou, M.; Daver, F.; Ivanova, E. P.; Murdoch, B. J.; Adhikari, B. Use of synergistic interactions to fabricate transparent and mechanically robust nanohybrids based on starch, non-isocyanate polyurethanes, and cellulose nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 47865–47878.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, H.; Chauhan, P.; Yan, N. “Barking” up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes. Green Chem. 2020, 22, 6874–6888.

    Article  CAS  Google Scholar 

  8. Tremblay-Parrado, K. K.; Bordin, C.; Nicholls, S.; Heinrich, B.; Donnio, B.; Avérous, L. Renewable and responsive cross-linked systems based on polyurethane backbones from clickable biobased bismaleimide architecture. Macromolecules 2020, 53, 5869–5880.

    Article  CAS  Google Scholar 

  9. Monie, F.; Grignard, B.; Thomassin, J. M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Chemo- and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew. Chem. Int. Ed. 2020, 132, 17181–17189.

    Article  Google Scholar 

  10. Wulf, C.; Reckers, M.; Perechodjuk, A.; Werner, T. Catalytic systems for the synthesis of biscarbonates and their impact on the sequential preparation of non-isocyanate polyurethanes. ACS Sustain. Chem. Eng. 2020, 8, 1651–1658.

    Article  CAS  Google Scholar 

  11. Leitsch, E. K.; Beniah, G.; Liu, K.; Lan, T.; Heath, W. H.; Scheidt, K. A.; Torkelson, J. M. Nonisocyanate thermoplastic polyhydroxyurethane elastomers via cyclic carbonate aminolysis: critical role of hydroxyl groups in controlling nanophase separation. ACS Macro Lett. 2016, 5, 424–429.

    Article  CAS  Google Scholar 

  12. Beniah, G.; Liu, K.; Heath, W. H.; Miller, M. D.; Scheidt, K. A.; Torkelson, J. M. Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur. Polym. J. 2016, 84, 770–783.

    Article  CAS  Google Scholar 

  13. Karami, Z.; Kabiri, K.; Zohuriaan-Mehr, M. J. Non-isoyanaate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: a preliminary study on thermo-mechanical and antibacterial properties. J. CO2 Util 2019, 34, 558–567.

    Article  CAS  Google Scholar 

  14. Beniah, G.; Fortman, D. J.; Heath, W. H.; Dichtel, W. R.; Torkelson, J. M. Non-isocyanate polyurethane thermoplastic elastomer: amide-based chain extender yields enhanced nanophase separation and properties in polyhydroxyurethane. Macromolecules. 2017, 50, 4425–4434.

    Article  CAS  Google Scholar 

  15. Ke, J.; Li, X.; Jiang, S.; Liang, C.; Wang, J.; Kang, M.; Li, Q.; Zhao, Y. Promising approaches to improve the performances of hybrid non-isocyanate polyurethane. Polym. Int. 2019, 68, 651–660.

    Article  CAS  Google Scholar 

  16. Zareanshahraki, F.; Asemani, H.; Skuza, J.; Mannari, V. Synthesis of non-isocyanate polyurethanes and their application in radiation-curable aerospace coatings. Prog. Org. Coat. 2020, 138, 105394.

    Article  CAS  Google Scholar 

  17. Boisaubert, P.; Kébir, N.; Schuller, A. S.; Burel, F. Photo-crosslinked non-isocyanate polyurethane acrylate (NIPUA) coatings through a transurethane polycondensation approach. Polymer 2020, 206, 122855.

    Article  CAS  Google Scholar 

  18. Boisaubert, P.; Kébir, N.; Schuller, A. S.; Burel, F. Photo-crosslinked coatings from an acrylate terminated non-isocyanate polyurethane (NIPU) and reactive diluent. Eur. Polym. J. 2020, 138, 109961.

    Article  CAS  Google Scholar 

  19. Panchireddy, S.; Grignard, B.; Thomassin, J. M.; Jerome, C.; Detrembleur, C. Catechol containing polyhydroxyurethanes as high-performance coatings and adhesives. ACS Sustain. Chem. Eng. 2018, 6, 14936–14944.

    Article  CAS  Google Scholar 

  20. Grignard, B.; Thomassin, J. -M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J. M.; Dubois, P.; Tran, M. P.; Park, C. B.; Jerome, C. CO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio-and CO2-sourced monomers to potentially thermal insulating materials. Green Chem. 2016, 18, 2206–2215.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Zhang, X.; Zhang, L.; Tan, T.; Fong, H. Nonisocyanate biobased poly(ester urethanes) with tunable properties synthesized via an environment-friendly route. ACS Sustain. Chem. Eng. 2016, 4, 2762–2770.

    Article  CAS  Google Scholar 

  22. Shen, Z.; Zhang, J.; Zhu, W.; Zheng, L.; Li, C.; Xiao, Y.; Liu, J.; Wu, S.; Zhang, B. A solvent-free route to non-isocyanate poly(carbonate urethane) with high molecular weight and competitive mechanical properties. Eur. Polym. J. 2018, 107, 258–266.

    Article  CAS  Google Scholar 

  23. Ghasemlou, M.; Daver, F.; Ivanova, E. P.; Adhikari, B. Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes. Carbohyd. Polym. 2020, 229, 115535.

    Article  CAS  Google Scholar 

  24. Martin, A.; Lecamp, L.; Labib, H.; Aloui, F.; Kébir, N.; Burel, F. Synthesis and properties of allyl terminated renewable non-isocyanate polyurethanes (NIPUs) and polyureas (NIPUreas) and study of their photo-crosslinking. Eur. Polym. J. 2016, 84, 828–836.

    Article  CAS  Google Scholar 

  25. Bossion, A.; Jones, G. O.; Taton, D.; Mecerreyes, D.; Hedrick, J. L.; Ong, Z. Y.; Yang, Y. Y.; Sardon, H. Non-isocyanate polyurethane soft nanoparticles obtained by surfactant-assisted interfacial polymerization. Langmuir 2017, 33, 1959–1968.

    Article  CAS  PubMed  Google Scholar 

  26. Kébir, N.; Nouigues, S.; Moranne, P.; Burel, F. Nonisocyanate thermoplastic polyurethane elastomers based on poly(ethylene glycol) prepared through the transurethanization approach. J. Appl. Polym. Sci. 2017, 134, 44991.

    Article  Google Scholar 

  27. Li, S.; Sang, Z.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Crystallizable and tough aliphatic thermoplastic polyureas synthesized through a nonisocyanate route. Ind. Eng. Chem. Res. 2016, 55, 1902–1911.

    Article  CAS  Google Scholar 

  28. Suqing, L.; Jingbo, Z.; Zhiyuan, Z.; Junying, Z.; Wantai, Y. Influence of crystallizable units on the properties of aliphatic thermoplastic poly(ether urethane) s synthesized through a non-isocyanate route. J. Elastom. Plast. 2017, 49, 738–757.

    Article  Google Scholar 

  29. Wang, G.; Yuan, X.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and properties of non-isocyanate thermoplastic polyurethanes containing dibutylene terephthalate units. J. Polym. Res. 2016, 23, 1–8.

    Article  Google Scholar 

  30. Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and characterization of aliphatic thermoplastic poly(ether urethane) elastomers through a non-isocyanate route. Polymer 2015, 57, 164–172.

    Article  CAS  Google Scholar 

  31. Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Adv. 2015, 5, 6843–6852.

    Article  CAS  Google Scholar 

  32. Deng, Y.; Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Crystallizable and tough aliphatic thermoplastic poly(ether urethane) s synthesized through a non-isocyanate route. RSC Adv. 2014, 4, 43406–43414.

    Article  CAS  Google Scholar 

  33. Yuan, X.; Sang, Z.; Zhao, J.; Zhang, Z.; Zhang, J.; Cheng, J. Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. J. Polym. Res. 2017, 24, 1–11.

    Article  Google Scholar 

  34. Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Adv. 2014, 4, 23720–23729.

    Article  CAS  Google Scholar 

  35. Li, C.; Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. J. Polym. Res. 2014, 21, 498.

    Article  Google Scholar 

  36. Sun, D.; Xie S.; Deng J.; Huang C.; Ruckenstein E.; Chao Z. CH3COONa as an effective catalyst for methoxycarbonylation of 1,6-hexanediamine by dimethylcarbonate to dimethylhexane 1,6-dicarbamate. Green Chem. 2010, 12, 483–490.

    Article  CAS  Google Scholar 

  37. Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic poly(ether urethane)s having long PEG sequences synthesized through a non-isocyanate route. Chinese J. Polym. Sci. 2015, 33, 880–889.

    Article  CAS  Google Scholar 

  38. Li, Y.; Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and characterization of crystallizable aliphatic thermoplastic poly(ester urethane) elastomers through a non-isocyanate route. Chinese J. Polym. Sci. 2016, 34, 1220–1233.

    Article  CAS  Google Scholar 

  39. Wang, G.; Wang, Q.; Zhao, J.; Zhang, Z.; Zhang, J. Synthesis and thermal and mechanical properties of nonisocyanate poly(ether urethane) thermoplastic elastomers containing dibutylene terephthalate and poly(tetramethylene ether) segments. J. Elastom. Plast. 2021, 53, 191–209.

    Article  Google Scholar 

  40. Li, S.; Deng, Y.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Synthesis and properties of non-isocyanate crystallizable aliphatic thermoplastic polyurethanes. J. Wuhan Univ. Technol. 2018, 33, 1275–1280.

    Article  CAS  Google Scholar 

  41. Deepa, P.; Jayakannan, M. Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2445–2458.

    Article  CAS  Google Scholar 

  42. Duval, C.; Kébir, N.; Charvet, A.; Martin, A.; Burel, F. Synthesis and properties of renewable nonisocyanate polyurethanes (NIPUs) from dimethylcarbonate. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1351–1359.

    Article  CAS  Google Scholar 

  43. Dongdong, P.; Hengshui, T. Polycarbonate polyurethane elastomers synthesized via a solvent-free and nonisocyanate melt transesterification process. J. Appl. Polym. Sci. 2015, 132, 41377.

    Article  Google Scholar 

  44. Kébir, N.; Benoit, M.; Legrand, C.; Burel, F. Non-isocyanate thermoplastic polyureas (NIPUreas) through a methyl carbamate metathesis polymerization. Eur. Polym. J. 2017, 96, 87–96.

    Article  Google Scholar 

  45. Shen, Z.; Zheng, L.; Li, C.; Liu, G.; Xiao, Y.; Wu, S.; Liu, J.; Zhang, B. A comparison of non-isocyanate and HDI-based poly(ether urethane): structure and properties. Polymer 2019, 175, 186–194.

    Article  CAS  Google Scholar 

  46. Asadpour, S.; Yeganeh, H.; Ai, J.; Ghanbari, H. A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. J. Mater. Sci. 2018, 53, 9913–9927.

    Article  CAS  Google Scholar 

  47. Gostev, A. A.; Shundrina, I. K.; Pastukhov, V. I.; Shutov, A. V.; Chernonosova, V. S.; Karpenko, A. A.; Laktionov, P. P. In vivo stability of polyurethane-based electrospun vascular grafts in terms of chemistry and mechanics. Polymers 2020, 12, 845.

    Article  CAS  PubMed Central  Google Scholar 

  48. Han, L.; Dai, J.; Zhang, L.; Ma, S.; Deng, J.; Zhang, R.; Zhu, J. Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials. RSC Adv. 2014, 4, 49471–49477.

    Article  CAS  Google Scholar 

  49. Gan, Z.; Abe, H.; Doi, Y. Biodegradable poly (ethylene succinate)(PES). 1. Crystal growth kinetics and morphology. Biomacromolecules 2000, 1, 704–712.

    Article  CAS  PubMed  Google Scholar 

  50. Gestí, S.; Almontassir, A.; Casas, M. T.; Puiggalí, J. Crystalline structure of poly(hexamethylene adipate). Study on the morphology and the enzymatic degradation of single crystals. Biomacromolecules 2006, 7, 799–808.

    Article  PubMed  Google Scholar 

  51. Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipate-co-butylene terephthalate) and related polyesters. Biomacromolecules 2002, 3, 390–396.

    Article  CAS  PubMed  Google Scholar 

  52. Aneja, A.; Wilkes, G. L. A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 2003, 44, 7221–7228.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (Nos. 52173009, 81971711, 21574137, 51373186), Beijing Natural Science Foundation (No. 2192065), and National Key R&D Program of China (No. 2016YFB1100800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu-Chun Zheng or Chun-Cheng Li.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, ZY., Mei, QY., Liu, Y. et al. A Non-isocyanate Route to Poly(ester urethane) with High Molecular Weight: Synthesis and Effect of Chemical Structures of Polyester-diol. Chin J Polym Sci 40, 75–84 (2022). https://doi.org/10.1007/s10118-021-2645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2645-5

Keywords

Navigation