Skip to main content
Log in

Dynamic Ring-chain Equilibrium of Nucleophilic Thiol-yne “Click” Polyaddition for Recyclable Poly(dithioacetal)s

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We report a dynamic polymerization system based on the reversible nucleophilic Michael polyaddition of activated alkynes and dithiols. Four poly(dithioacetal)s (P1–P4) were prepared via the base-catalyzed thiol-yne “click” polyaddition of two dithiols (1,4-butanedithiol (4S) and 1,5-pentanedithiol (5S)) and two alkynones (3-butyn-2-one (Y1) and 1-phenyl-2-propyn-1-one (Y2)) at high concentrations. We systematically investigated the base-catalyzed polymerization of 4S and Y1 (for polymer P1) under different conditions, and found that this polymerization was a highly concentration-dependent dynamic system: polymer P1 was formed at high concentration, while seven-membered dithioacetal, 1-(1,3-dithiepan-2-yl) propan-2-one (C1), was obtained at low concentration. The polymerization of 4S and Y2 (for polymer P4) displayed similar polymerization behavior, generating 2-(1,3-dithiepan-2-yl)-1-phenylethanone (C4) at low concentration. On the contrary, polymer P2 (from Y1 and 5S) was exclusively obtained with no formation of eight-membered dithioacetal. The polymerizations of Y1 with 1,2-ethanedithiol (2S) and 1,3-dimercaptopropane (3S) only afforded corresponding five- and six-membered dithioacetals, 1-(1,3-dithiolan-2-yl) propan-2-one (C2) and 1-(1,3-dithian-2-yl) propan-2-one (C3). This dynamic behavior of P1 and P4 was attributed to the concentration-dependent retro-Michael addition reaction between a thiol and a β-sulfido-α,β-unsaturated carbonyl compound catalyzed by bases. Furthermore, polymers P1 and P4 could be depolymerized into C1 and C4 in yields of 58% and 95%, respectively. The ring-opening polymerization of C1 at high concentration could successfully regenerate polymer P1. Thus, a new type of closed-loop recyclable poly(dithioacetal)s was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mutlu, H.; Ceper, E. B.; Li, X.; Yang, J.; Dong, W.; Ozmen, M. M.; Theato, P. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun. 2019, 40, e1800650.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, C. J.; Zhang, X. H. Recent progress on COS-derived polymers. Chinese J. Polym. Sci. 2019, 37, 951–958.

    Article  CAS  Google Scholar 

  3. Wang, Y.; Yang, J. L.; Zhang, C. J.; Zhang, X. H. Organocatalytic polymerization of sulfur-containing one-carbon monomer and epoxides. Acta Polymerica Sinica (in Chinese) 2020, 51, 1092–1103.

    Google Scholar 

  4. Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A. Oxidation-responsive polymeric vesicles. Nat. Mater. 2004, 3, 183–189.

    Article  CAS  PubMed  Google Scholar 

  5. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.

    Article  CAS  Google Scholar 

  6. Lowe, A. B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36.

    Article  CAS  Google Scholar 

  7. Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 2010, 39, 1355–1387.

    Article  CAS  PubMed  Google Scholar 

  8. Lowe, A. B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 2014, 55, 5517–5549.

    Article  CAS  Google Scholar 

  9. Lowe, A. B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym. Chem. 2014, 5, 4820–4870.

    Article  CAS  Google Scholar 

  10. Nair, D. P.; Podgorski, M.; Chatani, S.; Gong, T.; Xi, W. X.; Fenoli, C. R.; Bowman, C. N. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 2014, 26, 727–744.

    Article  CAS  Google Scholar 

  11. Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary perspective: there is a great future in sustainable polymers. Macromolecules 2017, 50, 3733–3750.

    Article  CAS  Google Scholar 

  12. Hong, M.; Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706.

    Article  CAS  Google Scholar 

  13. Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 2018, 6, 11145–11159.

    Article  CAS  Google Scholar 

  14. Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839–885.

    Article  CAS  PubMed  Google Scholar 

  15. Tang, X. Y.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284–312.

    Article  CAS  Google Scholar 

  16. Coates, G. W.; Getzler, Y. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020, 5, 501–516.

    Article  CAS  Google Scholar 

  17. Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem. 2018, 9, 2853–2867.

    Article  CAS  Google Scholar 

  18. Huang, D.; Liu, Y.; Guo, S.; Li, B. X.; Wang, J.; Yao, B. C.; Qin, A. J.; Tang, B. Z. Transition metal-free thiol-yne click polymerization toward Z-stereoregular poly(vinylene sulfide)s. Polym. Chem. 2019, 10, 3088–3096.

    Article  CAS  Google Scholar 

  19. Daglar, O.; Luleburgaz, S.; Baysak, E.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Nucleophilic thiol-yne reaction in macromolecular engineering: from synthesis to applications. Eur. Polym. J. 2020, 137, 109926.

    Article  CAS  Google Scholar 

  20. Han, J.; Zheng, Y.; Zhao, B.; Li, S.; Zhang, Y.; Gao, C. Sequentially hetero-functional, topological polymers by step-growth thiol-yne approach. Scientif. Rep. 2014, 4, 4387.

    Article  CAS  Google Scholar 

  21. Fairbanks, B. D.; Scott, T. F.; Kloxin, C. J.; Anseth, K. S.; Bowman, C. N. Thiol-yne photopolymerizations: novel mechanism, kinetics, and step-growth formation of highly cross-linked networks. Macromolecules 2009, 42, 211–217.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, G.; Kumar, J.; Gregory, A.; Stenzel, M. H., Efficient synthesis of dendrimers via a thiol-yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs. Chem. Commun. 2009, 6291–6293.

    Google Scholar 

  23. Konkolewicz, D.; Gray-Weale, A.; Perrier, S. Hyperbranched polymers by thiol-yne chemistry: from small molecules to functional polymers. J. Am. Chem. Soc. 2009, 131, 18075–18077.

    Article  CAS  PubMed  Google Scholar 

  24. Yao, B.; Hu, T.; Zhang, H.; Li, J.; Sun, J. Z.; Qin, A.; Tang, B. Z. Multi-functional hyperbranched poly(vinylene sulfide)s constructed via spontaneous thiol-yne click polymerization. Macromolecules 2015, 48, 7782–7791.

    Article  CAS  Google Scholar 

  25. Kuroda, H.; Tomita, I.; Endo, T. Facile synthetic method for the preparation of dithioacetals by the double conjugate addition of acetylenes bearing electron-withdrawing groups with thiols. Synthetic. Commun. 1996, 26, 1539–1543.

    Article  CAS  Google Scholar 

  26. Truong, V. X.; Dove, A. P. Organocatalytic, regioselective nucleophilic “click” addition of thiols to propiolic acid esters for polymer-polymer coupling. Angew. Chem. Int. Ed. 2013, 52, 4132–4136.

    Article  CAS  Google Scholar 

  27. Jim, C. K. W.; Qin, A.; Lam, J. W. Y.; Mahtab, F.; Yu, Y.; Tang, B. Z. Metal-free alkyne polyhydrothiolation: synthesis of functional poly(vinylenesulfide)s with high stereoregularity by regioselective thioclick polymerization. Adv. Funct. Mater. 2010, 20, 1319–1328.

    Article  CAS  Google Scholar 

  28. Du, J.; Huang, D.; Li, H.; Qin, A.; Tang, B. Z.; Li, Y. Catalyst-free click polymerization of thiol and activated internal alkynes: a facile strategy toward functional poly(β-thioacrylate)s. Macromolecules 2020, 53, 4932–4941.

    Article  CAS  Google Scholar 

  29. Bell, C. A.; Yu, J.; Barker, I. A.; Truong, V. X.; Cao, Z.; Dobrinyin, A. V.; Becker, M. L.; Dove, A. P. Independent control of elastomer properties through stereocontrolled synthesis. Angew. Chem. Int. Ed. 2016, 55, 13076–13080.

    Article  CAS  Google Scholar 

  30. Truong, V. X.; Ablett, M. P.; Richardson, S. M.; Hoyland, J. A.; Dove, A. P. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation. J. Am. Chem. Soc. 2015, 137, 1618–1622.

    Article  CAS  PubMed  Google Scholar 

  31. Macdougall, L. J.; Truong, V. X.; Dove, A. P. Efficient in situ nucleophilic thiol-yne click chemistry for the synthesis of strong hydrogel materials with tunable properties. ACS Macro Lett. 2017, 6, 93–97.

    Article  CAS  Google Scholar 

  32. Gunay, U. S.; Cetin, M.; Daglar, O.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast and efficient aza- and thiol-michael reactions on a polyester scaffold with internal electron deficient triple bonds. Polym. Chem. 2018, 9, 3037–3054.

    Article  CAS  Google Scholar 

  33. Perin, G.; Mello, L. G.; Radatz, C. S.; Savegnago, L.; Alves, D.; Jacob, R. G.; Lenardao, E. J. Green, catalyst-free thioacetalization of carbonyl compounds using glycerol as recyclable solvent. Tetrahedron Lett. 2010, 51, 4354–4356.

    Article  CAS  Google Scholar 

  34. Fatona, A.; Moran-Mirabal, J.; Brook, M. A. Controlling silicone networks using dithioacetal crosslinks. Polym. Chem. 2019, 10, 219–227.

    Article  CAS  Google Scholar 

  35. Xu, L.; Zhao, M.; Zhang, H.; Gao, W.; Guo, Z.; Zhang, X.; Zhang, J.; Cao, J.; Pu, Y.; He, B. Cinnamaldehyde-based poly(esterthioacetal) to generate reactive oxygen species for fabricating reactive oxygen species-responsive nanoparticles. Biomacromolecules 2018, 19, 4658–4667.

    Article  CAS  PubMed  Google Scholar 

  36. Gaston Orrillo, A.; Escalante, A. M.; Furlan, R. L. E. Dithioacetal exchange: a new reversible reaction for dynamic combinatorial chemistry. Chem. Eur. J. 2016, 22, 6746–6749.

    Article  PubMed  CAS  Google Scholar 

  37. Orrillo, A. G.; Escalante, A. M.; Furlan, R. L. E. Host amplification in a dithioacetal-based dynamic covalent library. Org. Lett. 2017, 19, 1446–1449.

    Article  CAS  PubMed  Google Scholar 

  38. Joshi, G.; Anslyn, E. V. Dynamic thiol exchange with β-sulfido-α, β-unsaturated carbonyl compounds and dithianes. Org. Lett. 2012, 14, 4714–4717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan, B.; Zhang, K.; Liu, Q.; Eelkema, R. Self-healing injectable polymer hydrogel via dynamic thiol-alkynone double addition cross-links. ACS Macro Lett. 2020, 9, 776–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Herck, N.; Maes, D.; Unal, K.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Covalent adaptable networks with tunable exchange rates based on reversible thiol-yne cross-linking. Angew. Chem. Int. Ed. 2020, 59, 3609–3617.

    Article  CAS  Google Scholar 

  41. Kuroda, H.; Tomita, I.; Endo, T. A novel phosphine-catalysed polyaddition of terminal acetylenes bearing electron-withdrawing groups with dithiols. Synthesis of polymers having dithioacetal moieties in the main chain. Polymer 1997, 38, 6049–6054.

    Article  CAS  Google Scholar 

  42. Daglar, O.; Cakmakci, E.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. A straightforward method for fluorinated polythioether synthesis. Macromolecules 2020, 53, 2965–2975.

    Article  CAS  Google Scholar 

  43. Daglar, O.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Extremely rapid polythioether synthesis in the presence of TBD. Macromolecules 2019, 52, 3558–3572.

    Article  CAS  Google Scholar 

  44. Andrzej, D.; Adam, K.; Jan, L.; Stanislaw, P. Thermodynamic and kinetic polymerizability of cyclic esters. Macromol. Symp. 2005, 224, 71–84.

    Article  CAS  Google Scholar 

  45. Hong, M.; Tang, X.; Newell, B. S.; Chen, E. Y. X. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469–8479.

    Article  CAS  Google Scholar 

  46. Shen, Y.; Li, Z. B. Ring-opening polymerization of cyclic esters by utilizing organophosphazene bases toward biodegradable polyesters. Acta Polymerica Sinica (in Chinese) 2020, 51, 777–790.

    Google Scholar 

  47. Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-chain metallopolymers at the static-dynamic boundary based on nickelocene. Nat. Chem. 2017, 9, 743–750.

    Article  CAS  Google Scholar 

  48. Dewit, M. A.; Beaton, A.; Gillies, E. R. A reduction sensitive cascade biodegradable linear polymer. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3977–3985.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0201400) and the National Natural Science Foundation of China (Nos. 21971005 and 21534001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Sheng Du or Zi-Chen Li.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, JX., Wang, QY., Du, FS. et al. Dynamic Ring-chain Equilibrium of Nucleophilic Thiol-yne “Click” Polyaddition for Recyclable Poly(dithioacetal)s. Chin J Polym Sci 39, 1146–1154 (2021). https://doi.org/10.1007/s10118-021-2587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2587-y

Keywords

Navigation