Skip to main content

Advertisement

Log in

Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors (NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating (D) unit is constructed by a thieno[3,4-c]pyrrole-4,6-dione (TPD) core attached to two cyclopentadithiophene (CPDT) moieties at both sides, and the electron-accepting (A) end-groups are 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b] naphthalen-1-ylidene)malononitrile (NC), respectively. Benefiting from TPD core, which easily forms quinoid structure and O⋯H or O⋯S intramolecular noncovalent interactions, TPDCIC and TPDCNC show more delocalization of π-electrons and perfect planar molecular geometries, giving the absorption ranges extended to 822 and 852 nm, respectively. Furthermore, the highest occupied molecular orbital (HOMO) levels of TPDCIC and TPDCNC remain relatively low-lying due to the electronegativity of the carbonyl groups on TPD core. Considering that the absorptions and energy levels of the two NFAs match well with those of a widely used polymer donor, PBDB-T, we fabricate two kinds of organic solar cells (OSCs) based on the PBDB-T:TPDCIC and PBDB-T:TPDCNC blended films, respectively. Through a series of optimizations, the TPDCIC-based devices yield an impressing power conversion efficiency (PCE) of 10.12% with a large short-circuit current density (JSC) of 18.16 mA·cm−2, and the TPDCNC-based ones exhibit a comparable PCE of 9.80% with a JSC of 17.40 mA·cm−2. Our work is the first report of the TPD-core-based A-D-A type NFAs, providing a good reference for the molecular design of high-performance NFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955–4961.

    Article  CAS  PubMed  Google Scholar 

  2. Li, S.; Liu, W.; Li, C. Z.; Shi, M.; Chen, H. Efficient organic solar cells with non-fullerene acceptors. Small 2017, 13, 1701120.

    Article  CAS  Google Scholar 

  3. Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.

    Article  CAS  Google Scholar 

  4. Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017, 139, 1336–1343.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, K.; Liu, X.; Xu, B.; Cui, Y.; Sun, M.; Hou, J. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219–229.

    Article  CAS  Google Scholar 

  6. Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35, 207–218.

    Article  CAS  Google Scholar 

  7. Li, S.; Zhang, Z.; Shi, M.; Li, C. Z.; Chen, H. Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys. Chem. Chem. Phys. 2017, 19, 3440–3458.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 2017, 139, 3356–3359.

    Article  CAS  PubMed  Google Scholar 

  9. Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganas, O.; Li, Y.; Zhan, X. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 2017, 29, 1604155.

    Article  CAS  Google Scholar 

  11. Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.; Ashraf, R. S.; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.; Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with > 1 V open circuit voltages. Energy Environ. Sci. 2016, 9, 3783–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 2017, 139, 4929–4934.

    Article  CAS  PubMed  Google Scholar 

  13. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1–12.

    Article  CAS  Google Scholar 

  15. Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem. 2019, 62, 403–404.

    Article  CAS  Google Scholar 

  16. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752.

    Article  CAS  Google Scholar 

  17. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X. Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: Effect of extended conjugation. Adv. Mater. 2018, 30, 1704713.

    Article  CAS  Google Scholar 

  19. Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Adv. Mater. 2018, 30, 1707170.

    Article  CAS  Google Scholar 

  20. Li, S.; Zhan, L.; Sun, C.; Zhu, H.; Zhou, G.; Yang, W.; Shi, M.; Li, C. Z.; Hou, J.; Li, Y.; Chen, H. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 2019, 141, 3073–3082.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, C.; Lau, T. K.; Zhang, G.; Lu, X.; Yip, H. L.; So, S. K.; Beaupre, S.; Mainville, M.; Johnson, P. A.; Leclerc, M.; Chen, H.; Peng, H.; Li, Y.; Zou, Y. Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater. 2019, 31, 1807577.

    Article  CAS  Google Scholar 

  22. Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J. L.; Chang, S. Y.; Zhang, Z.; Huang, W.; Wang, R.; Meng, D.; Gao, F.; Yang, Y. Enabling low voltage losses and high photo-current in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T. K.; Wan, J.; Lu, X.; Li, C. Z.; Chen, H. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 2016, 9, 604–610.

    Article  CAS  Google Scholar 

  24. Chen, C. A.; Yang, P. C.; Wang, S. C.; Tung, S. H.; Su, W. F. Side chain effects on the optoelectronic properties and self-assembly behaviors of terthiophene-thieno[3,4-c]pyrrole-4,6-di-one based conjugated polymers. Macromolecules 2018, 51, 7828–7835.

    Article  CAS  Google Scholar 

  25. Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler, M. R.; Boudreault, P. L.; Strzalka, J.; Morin, P. O.; Leclerc, M.; Lopez Navarrete, J. T.; Ratner, M. A.; Chen, L. X.; Chang, R. P.; Facchetti, A.; Marks, T. J. Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. J. Am. Chem. Soc. 2012, 134, 18427–18439.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-based polymers for high performance organic thin-film transistors. J. Am. Chem. Soc. 2009, 131, 7206–7207.

    Article  CAS  PubMed  Google Scholar 

  27. Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y. Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers. Adv. Funct. Mater. 2012, 22, 2345–2351.

    Article  CAS  Google Scholar 

  28. Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. N-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J. Am. Chem. Soc. 2008, 130, 9679–9694.

    Article  CAS  PubMed  Google Scholar 

  29. Najari, A.; Beaupre, S.; Berrouard, P.; Zou, Y.; Pouliot, J. R.; Lepage-Perusse, C.; Leclerc, M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater. 2011, 21, 718–728.

    Article  CAS  Google Scholar 

  30. Li, Z.; Tsang, S. W.; Du, X.; Scoles, L.; Robertson, G.; Zhang, Y.; Toll, F.; Tao, Y.; Lu, J.; Ding, J. Alternating copolymers of cyclopenta[2,1-b;3,4-b’] dithiophene and thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells. Adv. Funct. Mater. 2011, 21, 3331–3336.

    Article  CAS  Google Scholar 

  31. Li, S.; Ye, L.; Zhao, W.; Liu, X.; Zhu, J.; Ade, H.; Hou, J. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 2017, 29, 1704051.

    Article  CAS  Google Scholar 

  32. Wang, N.; Zhan, L.; Li, S.; Shi, M.; Lau, T. K.; Lu, X.; Shikler, R.; Li, C. Z.; Chen, H. Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Mater. Chem. Front. 2018, 2, 2006–2012.

    Article  CAS  Google Scholar 

  33. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 2017, 29, 1604059.

    Article  CAS  Google Scholar 

  35. Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-heterojunction organic solar cells: Five core technologies for their commercialization. Adv. Mater. 2016, 28, 7821–7861.

    Article  CAS  PubMed  Google Scholar 

  36. Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 2016, 7, 13740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, S.; Zhan, L.; Zhao, W.; Zhang, S.; Ali, B.; Fu, Z.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Hou, J.; Chen, H. Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 12132–12141.

    Article  CAS  Google Scholar 

  38. Yuan, L.; Lu, K.; Xia, B.; Zhang, J.; Wang, Z.; Wang, Z.; Deng, D.; Fang, J.; Zhu, L.; Wei, Z. Acceptor end-capped oligomeric conjugated molecules with broadened absorption and enhanced extinction coefficients for high-efficiency organic solar cells. Adv. Mater. 2016, 28, 5980–5985.

    Article  CAS  PubMed  Google Scholar 

  39. Zhan, L.; Li, S.; Zhang, H.; Gao, F.; Lau, T. K.; Lu, X.; Sun, D.; Wang, P.; Shi, M.; Li, C. Z.; Chen, H. A near-infrared photoactive morphology modifier leads to significant current improvement and energy loss mitigation for ternary organic solar cells. Adv. Sci. 2018, 5, 1800755.

    Article  CAS  Google Scholar 

  40. Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency. Adv. Mater. 2017, 29, 1604241.

    Article  CAS  Google Scholar 

  41. Fan, B.; Zhang, K.; Jiang, X. F.; Ying, L.; Huang, F.; Cao, Y. High-performance nonfullerene polymer solar cells based on imide-functionalized wide-bandgap polymers. Adv. Mater. 2017, 29, 1606396.

    Article  CAS  Google Scholar 

  42. Mai, J.; Xiao, Y.; Zhou, G.; Wang, J.; Zhu, J.; Zhao, N.; Zhan, X.; Lu, X. Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction. Adv. Mater. 2018, 30, 1802888.

    Article  CAS  Google Scholar 

  43. Mai, J.; Lau, T. K.; Li, J.; Peng, S. H.; Hsu, C. S.; Jeng, U. S.; Zeng, J.; Zhao, N.; Xiao, X.; Lu, X. Understanding morphology compatibility for high-performance ternary organic solar cells. Chem. Mater. 2016, 28, 6186–6195.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875216, 21734008) and Zhejiang Province Science and Technology Plan (No. 2018C01047). X. Lu and T. K. Lau acknowledge the financial support from Research Grant Council of Hong Kong (General Research Fund No. 14314216, CUHK Direct Grant No. 4053227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Min Shi or Hong-Zheng Chen.

Additional information

Invited article for special issue of “The 100th Anniversary of the Birth of Prof. Shi-Lin Yang”

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, SZ., Yang, WT., Gao, J. et al. Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells. Chin J Polym Sci 37, 1005–1014 (2019). https://doi.org/10.1007/s10118-019-2309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2309-x

Keywords

Navigation