Skip to main content
Log in

A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A phenol-containing dibenzhydryl-based α-diimine ligand bearing hydroxy group on para-position of aniline moiety was designed, synthesized, and investigated in Ni- and Pd-catalyzed ethylene polymerization. The Ni complex bearing hydroxy groups resulted in not only high polyethylene molecular weight (Mn up to 1.5 × 106), but also significantly increased melting temperature (Tm up to 123 °C) and greatly decreased branching density (33/1000C) versus the Ni catalyst bearing OMe group on para-position of aniline moiety. This is consistent with the hypothesis that the deprotonation of the phenol moiety generated a phenoxide bearing strong electrondonating O substituent by methylaluminoxane (MAO) cocatalyst. The Pd complexes bearing hydroxy groups exhibited similar catalytic properties to those of the Pd catalyst bearing OMe groups did.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 2018, 118, 9457–9492.

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157.

    Article  CAS  Google Scholar 

  3. Van Zee, N. J.; Sanford, M. J.; Coates, G. W. Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: Access to well-defined, functionalizable aliphatic polyesters. J. Am. Chem. Soc. 2016, 138, 2755–2761.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P. O.; Wu, Y. D.; Sigman, M. S.; Wiest, O. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 2014, 136, 1960–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric epoxidation with H2O2 by manipulating the electronic properties of non-heme iron catalysts. J. Am. Chem. Soc. 2013, 135, 14871–14878.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, M. S.; White, M. C. A predictably selective aliphatic C?H oxidation reaction for complex molecule synthesis. Science 2007, 318, 783–787.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, F. Z.; Tian, S. S.; Lia, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed a-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157–162.

    Article  CAS  Google Scholar 

  8. Kaiser, J. M.; Long, B. K. Recent developments in redox-active olefin polymerization catalysts. Coord. Chem. Rev. 2018, 372, 141–152.

    Article  CAS  Google Scholar 

  9. Ito, S. Palladium-catalyzed homo- and copolymerization of polar monomers: Synthesis of aliphatic and aromatic polymers. Bull. Chem. Soc. Jpn. 2018, 91, 251–261.

    Article  CAS  Google Scholar 

  10. Si, G. F.; Na, Y. N.; Chen, C. L. Ethylene (co)oligomerization by phosphine-pyridine based palladium and nickel catalysts. ChemCatChem 2018, 10, 5135–5140.

    Article  CAS  Google Scholar 

  11. Fu, X.; Zhang, L.; Tanaka, R.; Shiono, T.; Cai, Z. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers. Macromolecules 2017, 50, 9216–9221.

    Article  CAS  Google Scholar 

  12. Jian, Z. B. Synthesis of functionalized polyolefins: Design from catalysts to polar monomers. Acta Polymerica Sinica (in Chinese) 2018, 11, 1359–1371.

    Google Scholar 

  13. Ma, Z.; Yang, W.; Sun, W. H. Recent progress on transition metal (Fe, Co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chinese J. Chem. 2017, 35, 531–540.

    Article  CAS  Google Scholar 

  14. Song, X. Y.; Ma, Q.; Yuan, H. B.; Cai, Z. G. Synthesis of hydroxy-functionalized ultrahigh molecular weight polyethylene using fluorenylamidotitanium complex. Chinese J. Polym. Sci. 2018, 36, 171–175.

    Article  CAS  Google Scholar 

  15. Zhang, D.; Chen, C. L. Influence of polyethylene glycol unit on palladium and nickel catalyzed ethylene polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 14672–14676.

    Article  CAS  Google Scholar 

  16. Chen, M.; Chen, C. L. Polar functionalized polyolefins: New catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 11, 1372–1384.

    Google Scholar 

  17. Guo, L. H.; Liu, W.; Chen, C. L. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 2017, 1, 2487–2494.

    Article  CAS  Google Scholar 

  18. Chen, C. L. Designing transition metal catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–14.

    Article  CAS  Google Scholar 

  19. Zhao, M. H.; Chen, C. L. Accessing multiple catalytically active states in redox controlled olefin polymerization. ACS Catal. 2017, 7, 7490–7494.

    Article  CAS  Google Scholar 

  20. Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016, 6, 428–441.

    Article  CAS  Google Scholar 

  21. Chen, C. L. Redox controlled polymerization and copolymerization. ACS Catal. 2018, 8, 5506–5514.

    Article  CAS  Google Scholar 

  22. Zuideveld, M. A.; Wehrmann, P.; Röhr, C.; Mecking, S. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes. Angew. Chem. Int. Ed. 2004, 43, 869–873.

    Article  CAS  Google Scholar 

  23. Gao, H. Y.; Ke, Z. F.; Pei, L. X.; Song, K. M.; Wu, Q. Drastic ligand electronic effect on anilido-imino nickel catalysts toward ethylene polymerization. Polymer 2007, 48, 7249–7254.

    Article  CAS  Google Scholar 

  24. Wucher, P.; Goldbach, V.; Mecking, S. Electronic influences in phosphinesulfonato palladium(II) polymerization catalysts. Organometallics 2013, 32, 4516–4522.

    Article  CAS  Google Scholar 

  25. Chen, M.; Chen, C. L. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. ACS Catal. 2017, 7, 1308–1312.

    Article  CAS  Google Scholar 

  26. Liang, T.; Chen, C. L. Position makes the difference: Electronic effects in nickel-catalyzed ethylene polymerizations and copolymerizations. Inorg. Chem. 2018, 57, 14913–14919.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, J. X.; Yang, B. P.; Chen, C. L. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. J. Catal. 2019, 369, 233–238.

    Article  CAS  Google Scholar 

  28. Popeney, C. S.; Levins, C. M.; Guan, Z. Systematic investigation of ligand substitution effects in cyclophane-based nickel(II) and palladium(II) olefin polymerization catalysts. Organometallics 2011, 30, 2432–2452.

    Article  CAS  Google Scholar 

  29. Popeney, C.; Guan Z. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145–1155.

    Article  CAS  Google Scholar 

  30. Popeney, C. S.; Guan Z. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(II) α-diimine catalysts. Macromolecules 2010, 43, 4091–4097.

    Article  CAS  Google Scholar 

  31. Dai, S. Y.; Sui, X. L.; Chen, C. L. Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54, 9948–9953.

    Article  CAS  Google Scholar 

  32. Guo, L. H.; Dai, S. Y.; Chen, C. L. Investigations of the ligand electronic effects on α-diimine nickel(II) catalyzed ethylene polymerization. Polymers 2016, 8, 37–46.

    Article  CAS  PubMed Central  Google Scholar 

  33. Dai, S. Y.; Chen, C. L. Direct synthesis of functionalized highmolecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed. 2016, 55, 13281–13285.

    Article  CAS  Google Scholar 

  34. Dai, S. Y.; Chen, C. L. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules 2018, 51, 6818–6824.

    Article  CAS  Google Scholar 

  35. Na, Y. N.; Dai, S. Y.; Chen, C. L. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). Macromolecules 2018, 51, 4040–4048.

    Article  CAS  Google Scholar 

  36. Zou, C.; Dai, S. Y.; Chen, C. L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine-N-oxide catalysts: Modulation of polymer molecular weights and molecularweight distributions. Macromolecules 2018, 51, 49–56.

    Article  CAS  Google Scholar 

  37. Fang, J.; Sui, X. L.; Li, Y. G.; Chen, C. L. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143–4149.

    Article  CAS  Google Scholar 

  38. Zhou, S. X.; Chen, C. L. Synthesis of silicon-functionalized polyolefins by subsequent cobalt-catalyzed dehydrogenative silylation and nickel-catalyzed copolymerization. Sci. Bull. 2018, 63, 441–445.

    Article  CAS  Google Scholar 

  39. Lian, K.; Zhu, Y.; Li, W.; Dai, S. Y.; Chen, C. L. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules 2017, 50, 6074–6080.

    Article  CAS  Google Scholar 

  40. Sui, X. L.; Hong, C. W.; Pang, W. M.; Chen, C. L. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co) polymerization. Mater. Chem. Front. 2017, 1, 967–972.

    Article  CAS  Google Scholar 

  41. Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  42. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 2009, 48, 3244–3266.

    Article  CAS  Google Scholar 

  43. Tian, Y.; Chen, C. Y.; Yang, C. C.; Young, A. C.; Jang, S. H.; Chen, W. C.; Alex, K. Y. J. 2-(2'-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions. Chem. Mater. 2008, 20, 1977–1987.

    Article  CAS  Google Scholar 

  44. Yang, P.; Zhao, J.; Wu, W.; Yu, X.; Liu, Y. Accessing the long-lived triplet excited states in bodipy-conjugated 2-(2-hydroxyphenyl) benzothiazole/benzoxazoles and applications as organic triplet photosensitizers for photooxidations. J. Org. Chem. 2012, 77, 6166–6178.

    Article  CAS  PubMed  Google Scholar 

  45. Khan, S. A.; Azam, S. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal. Mater. Res. Bull. 2015, 70, 436–441.

    Article  CAS  Google Scholar 

  46. Takagi, S.; Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scripta Mater. 2015, 109, 1–5.

    Article  CAS  Google Scholar 

  47. Pauling, L. in The nature of the chemical bond, Cornell University Press, Ithaca, NY, 1967.

    Google Scholar 

  48. Riilke, R. E.; Ernsting, J. M.; Spelt, A. L.; Elsevier, C. J.; van Leeuwelqs, R. W. N. M.; Vrieze, K. NMR study on the coordination behavior of dissymmetric terdentate trinitrogen ligands on methylpalladium(II) compounds. Inorg. Chem. 1993, 32, 5769–5778.

    Article  Google Scholar 

  49. Gomes, C. S. B.; Costa, S. I.; Silva, L. C.; Jimenez-Tenorio, M.; Valerga, P.; Puerta, M. C.; Gomes, P. T. Cationic R-substituted-indenyl nickel(II) complexes of arsine and stibine ligands: Synthesis, characterization, and catalytic behavior in the oligomerization of styrene. Eur. J. Inorg. Chem. 2018, 597–607.

    Google Scholar 

  50. Kaliner, M.; Strassner, T. Tunable aryl alkyl ionic liquids with weakly coordinating bulky borate anion. Tetrahedron Lett. 2016, 57, 3453–3456.

    Article  CAS  Google Scholar 

  51. Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of polyethylenes with controlled branching with α-diimine nickel catalysts and revisiting formation of long-chain branching. ACS Catal. 2018, 8, 1104–1113.

    Article  CAS  Google Scholar 

  52. Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661–5669.

    Article  CAS  Google Scholar 

  53. Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co) polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682.

    Article  CAS  Google Scholar 

  54. Liao, H.; Zhong, L.; Xiao, Z.; Zheng, T.; Gao, H.; Wu, Q. α-Diamine nickel catalysts with nonplanar chelate rings for ethylene polymerization. Chem. Eur. J. 2016, 22, 14048–14055.

    Article  CAS  PubMed  Google Scholar 

  55. Hu, H.; Gao, H.; Chen, D.; Li, G.; Tan, Y.; Liang, G.; Zhu, F.; Wu, Q. Ligand-directed regioselectivity in amine–imine nickelcatalyzed 1-hexene polymerization. ACS Catal. 2015, 5, 122–128.

    Article  CAS  Google Scholar 

  56. Hu, H.; Zhang, L.; Gao, H.; Zhu, F.; Wu, Q. Design of thermally stable amine-imine nickel catalyst precursors for living polymerization of ethylene: Effect of ligand substituents on catalytic behavior and polymer properties. Chem. Eur. J. 2014, 20, 3225–3233.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature. Macromolecules 2014, 47, 3325–3331.

    Article  CAS  Google Scholar 

  58. Zai, S.; Gao, H.; Huang, Z.; Hu, H.; Wu, H.; Wu, Q. Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization. ACS Catal. 2012, 2, 433–440.

    Article  CAS  Google Scholar 

  59. Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Living/controlled polymerization of 4-methyl-1-pentene with α-diimine nickel-diethylaluminium chloride: Effect of alkylaluminium cocatalysts. Polym. Chem. 2011, 2, 1398–1403.

    Article  CAS  Google Scholar 

  60. Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: Effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 2009, 42, 7789–7796.

    Article  CAS  Google Scholar 

  61. CCDC 1887662 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21690071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Le Chen.

Additional information

Invited article for special issue of “The 100th Anniversary of the Birth of Prof. Shi-Lin Yang”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Pang, WM. & Chen, CL. A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization. Chin J Polym Sci 37, 974–980 (2019). https://doi.org/10.1007/s10118-019-2232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2232-1

Keywords

Navigation