Skip to main content
Log in

Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Photoresponsive hydrogels have been attractive because they can provide precise spatial and temporal control for molecule release, whereas the conventional preparation of photoresponsive hydrogels generally involves complex chemical synthesis steps or specific conditions which limits their practical applications. Herein, a new photoresponsive hydrogel is facilely prepared via co-assembly of two simple molecules, Fmoc-Phe-OH and Azp, without chemical synthesis. The co-assembly mechanism, morphology, and photoresponsiveness of (Fmoc-Phe-OH)-Azp hydrogel are investigated by circular dichroism (CD), ultraviolet-visible (UV-Vis), fluorescence, 1H nuclear magnetic resonance (1H-NMR), attenuated total internal reflection Fourier transform Infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). Furthermore, the enhanced release of encapsulated sulforhodamine B (SRB) dye molecules can be achieved via UV light irradiation. The enhanced dye release amount can be controlled by manipulating photoirradiation time. This study provides a facile way to prepare photoresponsive hydrogel which holds great potential for controllable drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dou, X. Q.; Feng, C. L. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv. Mater. 2017, 29, 1604062.

    Article  CAS  Google Scholar 

  2. Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydro-gelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165.

    Article  CAS  Google Scholar 

  3. Wang, Y. C.; Shim, M. S.; Levinson, N. S.; Sung, H. W.; Xia, Y. N. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 2014, 24, 4206.

    Article  CAS  Google Scholar 

  4. Zhang, W. M.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: Engineering and applications. Chinese J. Polym. Sci. 2018, 36, 273.

    Article  CAS  Google Scholar 

  5. Samai, S.; Sapsanis, C.; Patil, S. P.; Ezzeddine, A.; Moosa, B. A.; Omran, H.; Emwas, A. H.; Salama, K. N.; Khashab, N. M. A light responsive two-component supramolecular hydrogel: A sensitive platform for the fabrication of humidity sensors. Soft Matter 2016, 12, 2842.

    Article  CAS  Google Scholar 

  6. He, M. T.; Li, J. B.; Tan, S.; Wang, R. Z.; Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 2013, 135, 18718.

    Article  CAS  Google Scholar 

  7. Chen, Q.; Lv, Y. X.; Zhang, D. Q.; Zhang, G. X.; Liu, C. Y.; Zhu, D. B. Cysteine and pH-responsive hydrogel based on a saccharide derivative with an aldehyde group. Langmuir 2010, 26, 3165.

    Article  CAS  Google Scholar 

  8. Sarkar, K.; Dastidar, P. Supramolecular hydrogel derived from a C3-symmetric boronic acid derivative for stimuli-responsive release of insulin and doxorubicin. Langmuir 2018, 34, 685.

    Article  CAS  Google Scholar 

  9. Wang, F.; Feng, C. L. Metal-ion-mediated supramolecular chirality of L-phenylalanine based hydrogels. Angew. Chem. Int. Ed. 2018, 57, 5655.

    Article  CAS  Google Scholar 

  10. Cheng, C.; Tang, M. C.; Wu, C. S.; Simon, T.; Ko, F. H. New synthesis route of hydrogel through a bioinspired supramolecular approach: Gelatin, binding interaction, and in vitro dressing. ACS Appl. Mater. Interfaces 2015, 7, 19306.

    Article  CAS  Google Scholar 

  11. Kuddushi, M.; Patel, N. K.; Rajputt, S.; Shah, A.; EI Seoud, O. A.; Malek, N. I. Thermo-switchable de novo ionic liquid-based gelators with dye absorbing and drug encapsulating characteristics. ACS Omega 2018, 3, 12068.

    Article  CAS  Google Scholar 

  12. Shankar, B. V.; Patnaik, A. A new pH and thermo-responsive chiral hydrogel for stimulated release. J. Phys. Chem. B 2007, 111, 9294.

    Article  CAS  Google Scholar 

  13. Lu, X. J.; Yang, X. Y.; Meng, Y.; Li, S. Z. Temperature and pH dually-responsive poly(ß-amino ester) nanoparticles for drug delivery. Chinese J. Poly. Sci. 2017, 35, 534.

    Article  CAS  Google Scholar 

  14. Ji, W.; Liu, G. F.; Xu, M. X.; Feng, C. L. A redox-responsive supramolecular hydrogel for controllable dye release. Macromol. Chem. Phys. 2015, 216, 1945.

    Article  CAS  Google Scholar 

  15. Wojciechowski, J. P.; Martin, A. D.; Thordarson, P. Kinetically controlled lifetimes in redox-responsive transient supramolecular hydrogels. J. Am. Chem. Soc. 2018, 140, 2869.

    Article  CAS  Google Scholar 

  16. Yao, L.; Krause, S. Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules 2003, 36, 2055.

    Article  CAS  Google Scholar 

  17. Ji, W.; Liu, G. F.; Wang, F.; Zhu, Z.; Feng, C. L. Galactosedecorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chem. Commun. 2016, 52, 12574.

    Article  CAS  Google Scholar 

  18. Ji, W.; Qin, M. G.; Feng, C. L. Photoresponsive coumarinbased supramolecular hydrogel for controllable dye release. Macromol. Chem. Phys. 2018, 219, 1700398.

    Article  CAS  Google Scholar 

  19. Roth-Konforti, M. E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L. UV light-responsive peptide-based supramolecular hydrogel for controlled drug delivery. Macromol. Rapid Commun. 2018, 1800588.

    Google Scholar 

  20. Yang, Q. F.; Wang, P.; Zhao, C. Z.; Wang, W. Q.; Yang, J. F.; Liu, Q. Light-switchable self-healing hydrogel based on hostguest macro-crosslinking. Macromol. Rapid Commun. 2017, 38, 1600741.

    Article  CAS  Google Scholar 

  21. Liu, G. F.; Ji, W.; Wang, W. L.; Feng, C. L. Azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release. ACS Appl. Mater. Interfaces 2015, 7, 301.

    Article  CAS  Google Scholar 

  22. Wang, W.; Gao, F.; Yao, Y.; Lin, S. L. Directional photo-manipulation of self-assembly patterned microstructures. Chinese J. Polym. Sci. 2018, 36, 297.

    Article  CAS  Google Scholar 

  23. Muraoka, T.; Koh, C. Y.; Cui, H. G.; Stupp, S. I. Lighttriggered bioactivity in three dimensions. Angew. Chem. Int. Ed. 2009, 48, 5946.

    Article  CAS  Google Scholar 

  24. Komatsu, H.; Tsukiji, S.; Ikeda, M.; Hamachi, I. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Chem. Asian J. 2001, 6, 2368.

    Google Scholar 

  25. Yang, R. M.; Peng, S. H.; Wan, W. B.; Hughes, T. C. Azobenzene based multistimuli responsive supramolecular hydrogels. J. Mater. Chem. C 2014, 2, 9122.

    Article  CAS  Google Scholar 

  26. Wang, D. S.; Wagner, M.; Butt, H. J.; Wu, S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. Soft Matter 2015, 11, 7656.

    Article  CAS  Google Scholar 

  27. Dou, X. Q.; Li, P.; Zhang, D.; Feng, C. L. C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter 2012, 8, 3231.

    Article  CAS  Google Scholar 

  28. Dou, X. Q.; Zhang, D.; Feng, C. L.; Jiang, L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 2015, 9, 10664.

    Article  CAS  Google Scholar 

  29. Liu, J. Y.; Yuan, F.; Ma, X. Y.; Auphedeous, D. Y.; Zhao, C. L.; Liu, C. T.; Shen, C. Y.; Feng, C. L. The cooperative effect of both molecular and supramolecular chirality on cell adhesion. Angew. Chem. Ind. Ed. 2018, 57, 6475.

    Article  CAS  Google Scholar 

  30. Liu, G. F.; Zhang, D.; Feng, C. L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem. Int. Ed. 2014, 53, 7789.

    Article  CAS  Google Scholar 

  31. Huang, S.; Chen, Y. X.; Ma, S. D.; Yu, H. F. Hierarchical selfassembly in liquid-crystalline block copolymers enabled by chirality transfer. Angew. Chem. Int. Ed. 2018, 57, 12524.

    Article  CAS  Google Scholar 

  32. Ryan, D. M.; Doran, T. M.; Anderson, S. B.; Nilsson, B. L. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Langmuir 2011, 27, 4029.

    Article  CAS  Google Scholar 

  33. Zhang, P.; Huang, Y. X.; Kwon, Y. T.; Li, S. PEGylated Fmocamino acid conjugates as effective nanocarriers for improved drug delivery. Mol. Pharmaceutics 2015, 12, 1680.

    Article  CAS  Google Scholar 

  34. Dou, X. Q.; Li, P.; Lu, S. Q.; Tian, X. B.; Tang, Y. T.; Mercer-Chalmers, J. D.; Feng, C. L.; Zhang, D. Highly directional coassembly of 2,6-pyridinedicarboxylic acid and 4-hydroxypyridine based on low molecular weight gelators. J. Mol. Liq. 2013, 180, 129.

    Article  CAS  Google Scholar 

  35. Zhang, H. B.; Zhao, R.; Jackson, J. K.; Chiao, M.; Yu, H. F. Janus ultrathin film form multi-level self-assembly at air-water interfaces. Chem. Commun. 2014, 50, 14843.

    Article  CAS  Google Scholar 

  36. Liu, H.; Kobayashi, T.; Yu, H. F. Easy fabrication and morphology control of supramolecular liquid-crystalline polymer microparticles. Macromol. Rapid Commun. 2011, 32, 378.

    Article  CAS  Google Scholar 

  37. Yu, H. F.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecualr liquid-crystalline microparticles. ACS Appl. Mater. Interfaces 2011, 3, 1333.

    Article  CAS  Google Scholar 

  38. Chakraborty, P.; Mondal, S.; Khara, S.; Bairi, P.; Nandi, A. K. Integration of poly(ethylene glycol) in N-fluorenylmethoxycarbonyl-L-tryptophan hydrogel influencing mechanical, thixotropic, and release properties. J. Phys. Chem. B 2015, 119, 5933.

    Article  CAS  Google Scholar 

  39. Liu, G. F.; Sheng, J. H.; Teo, W. L.; Yang, G. B.; Wu, H. W.; Li, Y. X.; Zhao, Y. L. Control on dimensions and supramolecular chirality of self-assemblies through light and metal ions. J. Am. Chem. Soc. 2018, 140, 16275.

    Article  CAS  Google Scholar 

  40. Galanti, A.; Diez-Cabanes, V.; Santoro J.; Valášek, M.; Minoia, A.; Mayor, M.; Cornil, J.; Samorì, P. Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: Self-assembly and multiphotochromism. J. Am. Chem. Soc. 2018, 140, 16062.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Alexander von Humboldt Foundation (postdoc stipend to X. Q. Dou), the European Research Council (No. 279202), and the National Natural Science Foundation of China (Nos. 51833006 and 51573092). We thank Dipl.-Ing. Gregor Schulte for his technical support, as well as Prof. Dr. Ulrich Jonas, Dipl.-Labchem. Petra Frank (Macromolecular Chemistry, Department Chemistry–Biology, University of Siegen), who kindly granted access to ATR-FTIR measurement, and Prof. Dr. Heiko Ihmels (Organic Chemistry II, University of Siegen) who kindly provided access to the CD measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Liang Feng or Holger Schönherr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, XQ., Zhao, CL., Mehwish, N. et al. Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release. Chin J Polym Sci 37, 437–443 (2019). https://doi.org/10.1007/s10118-019-2223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2223-2

Keywords

Navigation