Skip to main content
Log in

Bimetallic aluminum complexes supported by bis(salicylaldimine) ligand: Synthesis, characterization and ring-opening polymerization of lactide

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two types of bifunctional bis(salicylaldimine) ligands (syn-L and anti-L) were designed and synthesized to support bimetallic aluminum complexes. Owing to the rigid anthracene skeleton, syn-L and anti-L successfully locked two Al centers in close proximity (syn-Al2) and far apart (anti-Al2), respectively. The distance between two Al centers in syn-Al2 was defined by X-ray diffraction as 6.665 Å, which is far shorter than that in anti-Al2. In the presence of stoichiometrical BnOH, syn-Al2 and anti-Al2 were both efficient for ring-opening polymerization (ROP) of rac-LA with the former being more active. In the presence of excess BnOH, syn-Al2 showed an efficient and immortal feature, consistent with high conversions, matched Mns, narrow molecular weight distributions and end group fidelity, while anti-Al2 had a much lower activity or even became entirely inactive due to rapid decomposition, indicated by in situ1H-NMR experiments of Al complexes with BnOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115(1), 28–126.

    Article  CAS  Google Scholar 

  2. Hetterscheid, D. G. H.; Chikkali, S. H.; de Bruin, B.; Reek, J. N. H. Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins. ChemCatChem 2013, 5(10), 2785–2793.

    Article  CAS  Google Scholar 

  3. Sone, T.; Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric synthesis of 2,2-disubstituted terminal epoxides via dimethyloxosulfonium methylide addition to ketones. J. Am. Chem. Soc. 2008, 130(31), 10078–10079.

    Article  CAS  Google Scholar 

  4. Matsunaga, S.; Shibasaki, M. Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chem. Commun. 2014, 50(9), 1044–1057.

    Article  CAS  Google Scholar 

  5. Huang, H. H.; Zhang, C. H.; Qin, Y. W.; Niu, H.; Dong, J. Y. Synthesis of styryl-capped polypropylene via metallocenemediated coordination polymerization: apply to polypropylene macromolecular engineering. Chinese J. Polym. Sci. 2013, 31(4), 550–562.

    Article  CAS  Google Scholar 

  6. Wang, J.; Li, H. M.; Guo, J. P.; Huang, Q. G.; Yi, J. J.; Liu, Y. F.; Gao, K. J.; Yang, W. T. Coral-shaped and core-shell structure copolyethylene nanocomposites particles prepared by in situ coordination polymerization. Chinese J. Polym. Sci. 2015, 33(12), 1650–1660.

    Article  CAS  Google Scholar 

  7. Delferro, M.; Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011, 111(3), 2450–2485.

    Article  CAS  Google Scholar 

  8. Zhang, J.; Liu, S.; Zuo, W.; Ye, H.; Li, Z. Synthesis of dinuclear aluminum complexes bearing bis-phenolate ligand and application in ring-opening polymerization of ε-caprolactone. New J. Chem. 2017, 41(6), 2358–2363.

    Article  CAS  Google Scholar 

  9. Xiang, S.; Shao, J.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci. 2016, 34(1), 69–76.

    Article  CAS  Google Scholar 

  10. Huang, H. C.; Wang, B.; Zhang, Y. P.; Li, Y. S. Bimetallic aluminum complexes with cyclic β-ketiminato ligands: the cooperative effect improves their capability in polymerization of lactide and ε-caprolactone. Polym. Chem. 2016, 7(37), 5819–5827.

    Article  CAS  Google Scholar 

  11. Wu, L. Y.; Fan, D. D.; Lu, X. Q.; Lu, R. Ring-opening copolymerization of cyclohexene oxide and maleic anhydride catalyzed by mononuclear [Zn(L)(H2O)] or binuclear [Zn2(L)(OAc)2 (H2O)] complex based on the Salen-type Schiff-base ligand. Chinese J. Polym. Sci. 2014, 32(6), 768–777.

    Article  CAS  Google Scholar 

  12. Sun, S.; Nie, K.; Tan, Y.; Zhao, B.; Zhang, Y.; Shen, Q.; Yao, Y. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides. Dalton Trans. 2013, 42(8), 2870–2878.

    Article  CAS  Google Scholar 

  13. Wang, Y.; Ma, H. Exploitation of dinuclear salan aluminum complexes for versatile copolymerization of ε-caprolactone and L-lactide. Chem. Commun. 2012, 48(53), 6729–6731.

    Article  CAS  Google Scholar 

  14. Saha, T. K.; Ramkumar, V.; Chakraborty, D. Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides. Inorg. Chem. 2011, 50(7), 2720–2722.

    Article  CAS  Google Scholar 

  15. Li, W.; Wu, W.; Wang, Y.; Yao, Y.; Zhang, Y.; Shen, Q. Bimetallic aluminum alkyl complexes as highly active initiators for the polymerization of ε-caprolactone. Dalton Trans. 2011, 40(43), 11378–11381.

    Article  CAS  Google Scholar 

  16. Yao, W.; Mu, Y.; Gao, A.; Gao, W.; Ye, L. Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone. Dalton Trans. 2008, 3199–3206.

    Google Scholar 

  17. Arbaoui, A.; Redshaw, C.; Hughes, D. L. Multinuclear alkylaluminum macrocyclic Schiff base complexes: influence of procatalyst structure on the ring opening polymerisation of ε-caprolactone. Chem. Commun. 2008, 4717–4719.

    Google Scholar 

  18. Williams, C. K.; Brooks, N. R.; Hillmyer, M. A.; Tolman, W. B. Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Chem. Commun. 2002, 2132–2133.

    Google Scholar 

  19. Kan, C.; Ma, H. Copolymerization of L-lactide and ε-caprolactone catalyzed by mono-and dinuclear salen aluminum complexes bearing bulky 6,6′-dimethylbiphenyl-bridge: random and tapered copolymer. RSC Adv. 2016, 6(53), 47402–47409.

    Article  CAS  Google Scholar 

  20. Chen, L.; Li, W.; Yuan, D.; Zhang, Y.; Shen, Q.; Yao, Y. Syntheses of mononuclear and dinuclear aluminum complexes stabilized by Phenolato ligands and their applications in the polymerization of ε-caprolactone: a comparative study. Inorg. Chem. 2015, 54(10), 4699–4708.

    Article  CAS  Google Scholar 

  21. Wei, Y.; Wang, S.; Zhou, S. Aluminum alkyl complexes: synthesis, structure, and application in ROP of cyclic esters. Dalton Trans. 2016, 45(11), 4471–4485.

    Article  CAS  Google Scholar 

  22. Li, W.; Ouyang, H.; Chen, L.; Yuan, D.; Zhang, Y.; Yao, Y. A comparative study on dinuclear and mononuclear aluminum methyl complexes bearing piperidyl-phenolato ligands in ROP of epoxides. Inorg. Chem. 2016, 55(13), 6520–6524.

    Article  CAS  Google Scholar 

  23. Li, L.; Liu, B.; Liu, D.; Wu, C.; Li, S.; Liu, B.; Cui, D. Copolymerization of ε-caprolactone and L-lactide catalyzed by multinuclear aluminum complexes: an immortal approach. Organometallics 2014, 33(22), 6474–6480.

    Article  CAS  Google Scholar 

  24. Liu, S.; Motta, A.; Mouat, A. R.; Delferro, M.; Marks, T. J. Very large cooperative effects in heterobimetallic titanium-chromium catalysts for ethylene polymerization/copolymerization. J. Am. Chem. Soc. 2014, 136(29), 10460–10469.

    Article  CAS  Google Scholar 

  25. Liu, S.; Motta, A.; Delferro, M.; Marks, T. J. Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for highly branched polyethylenes. J. Am. Chem. Soc. 2013, 135(24), 8830–8833.

    Article  CAS  Google Scholar 

  26. Inoue, S. Immortal polymerization: the outset, development, and application. J. Polym. Sci., Part A: Polym. Chem. 2000, 38(16), 2861–2871.

    Article  CAS  Google Scholar 

  27. Cheung, K. C.; Wong, W. L.; So, M. H.; Zhou, Z. Y.; Yan, S. C.; Wong, K. Y. A dinuclear ruthenium catalyst with a confined cavity: selectivity in the addition of aliphatic carboxylic acids to phenylacetylene. Chem. Commun. 2013, 49(7), 710–712.

    Article  CAS  Google Scholar 

  28. Kendall, J. K.; Shechter, H. Intramolecular behaviors of anthryldicarbenic systems: dibenzo[b,f]pentalene and 1H,5Hdicyclobuta[de,kl]anthracene. J. Org. Chem. 2001, 66(20), 6643–6649.

    Article  CAS  Google Scholar 

  29. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  30. Sheldrick, G. M. A short story of SHELX. Acta Cryst. A 2008, 64, 112–122.

    Article  CAS  Google Scholar 

  31. Sheldrick, G. M., “Shelxtl PC: an integrated system for solving, refining, and displaying crystal structures from diffraction data”, Version 6.014, Bruker AXS, Madison, WI, 2000.

    Google Scholar 

  32. Ulatowski, F.; Jurczak, J. Chiral recognition of carboxylates by a static library of thiourea receptors with amino acid arms. J. Org. Chem. 2015, 80(9), 4235–4243.

    Article  CAS  Google Scholar 

  33. Kim, Y. K.; Lee, H. N.; Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.; Hyun, M. H. Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: opposite chiral selectivities from similar binding units. J. Org. Chem. 2008, 73(1), 301–304.

    Article  CAS  Google Scholar 

  34. Salata, M. R.; Marks, T. J. Catalyst nuclearity effects in olefin polymerization. enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts. Macromolecules 2009, 42(6), 1920–1933.

    Article  CAS  Google Scholar 

  35. Han, H. L.; Liu, Y.; Liu, J. Y.; Nomura, K.; Li, Y. S. Synthesis of binuclear phenoxyimino organoaluminum complexes and their use as the catalyst precursors for efficient ring-opening polymerisation of ε-caprolactone. Dalton Trans. 2013, 42(34), 12346–12353.

    Article  CAS  Google Scholar 

  36. Zhang, W.; Wang, Y.; Sun, W. H.; Wang, L.; Redshaw, C. Dimethylaluminium aldiminophenolates: synthesis, characterization and ring-opening polymerization behavior towards lactides. Dalton Trans. 2012, 41(38), 11587–11596.

    Article  CAS  Google Scholar 

  37. Zhao, W.; Wang, Y.; Liu, X.; Chen, X.; Cui, D.; Chen, E. Y. X. Protic compound mediated living cross-chain-transfer polymerization of rac-lactide: synthesis of isotactic (crystalline)-heterotactic (amorphous) stereomultiblock polylactide. Chem. Commun. 2012, 48(51), 6375–6377.

    Article  CAS  Google Scholar 

  38. Zhao, W.; Cui, D.; Liu, X.; Chen, X. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study. Macromolecules 2010, 43(16), 6678–6684.

    Article  CAS  Google Scholar 

  39. Helou, M.; Miserque, O.; Brusson, J. M.; Carpentier, J. F.; Guillaume, S. M. Ultraproductive, zinc-mediated, immortal ring-opening polymerization of trimethylene carbonate. Chem. Eur. J. 2008, 14(29), 8772–8775.

    Article  CAS  Google Scholar 

  40. Liu, J.; Iwasa, N.; Nomura, K. Synthesis of Al complexes containing phenoxy-imine ligands and their use as the catalyst precursors for efficient living ring-opening polymerisation of ε-caprolactone. Dalton Trans. 2008, 3978–3988.

    Google Scholar 

  41. Liu, S.; Zhang, J.; Zuo, W.; Zhang, W.; Sun, W. H.; Ye, H.; Li, Z. Synthesis of aluminum complexes bearing 8-anilide-5,6,7-trihydroquinoline ligands: highly active catalyst precursors for ring-opening polymerization of cyclic esters. Polymers 2017, 9(3), DOI: 10.3390/polym9030083.

    Google Scholar 

  42. Luo, W.; Shi, T.; Liu, S.; Zuo, W.; Li, Z. Well-designed unsymmetrical Salphen-Al complexes: synthesis, characterization, and ring-opening polymerization catalysis. Organometallics 2017, 36(9), 1736–1742.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. B040102), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (Donghua University) (No. LK1501), Department of Science and Technology of Qingdao and Shandong Province (Nos. 159181jch and 2015GGX107015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Feng Liu or Zhi-Bo Li.

Additional information

Invited paper for special issue of “Metal-Catalyzed Polymerization”

Electronic supplementary material

10118_2018_2039_MOESM1_ESM.pdf

Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Zheng, QD., Zuo, WW. et al. Bimetallic aluminum complexes supported by bis(salicylaldimine) ligand: Synthesis, characterization and ring-opening polymerization of lactide. Chin J Polym Sci 36, 149–156 (2018). https://doi.org/10.1007/s10118-018-2039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2039-5

Keywords

Navigation