Skip to main content
Log in

Influence of global change on phytoplankton and nutrient cycling in the Elbe River

  • Papers from the GLOWA-Elbe Project
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The effects of changing climatic and socioeconomic conditions on the water quality of the Elbe River were investigated using the deterministic model QSim. Since the impact of global change on river water quality marks the endpoint of various processes in the catchment and in the atmosphere, this study was performed within a network of interacting models that determined input parameters for water quality simulations. The development of phytoplankton and nutrient concentrations under conditions of global change was modeled along a 700 km stretch of the river. The simulations revealed a strong, scale-dependent effect of climate change on phytoplankton biomass, leading to a longitudinal shift of the dominating processes (primary productivity vs. respiration) along the river continuum. Under reduced flow, combined with increasing temperature and global radiation, phytoplankton biomass increased and phytoplankton maxima shifted in upstream direction, followed by higher system respiration rates in the adjacent downstream sections. In contrast, higher flow shifted the phytoplankton maximum toward the downstream sections. Even a drastic reduction of phosphorus inputs from anthropogenic sources had only limited influence on algal biomass, due to the ability of algal cells to store phosphorus. A strong reduction in P-inputs especially in the headwaters would be necessary to counterbalance the possible climate-induced effects on algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Allan JD, Palmer M, Poff NL (2005) Climate change and freshwater ecosystems. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 272–290

    Google Scholar 

  • ARGE-Elbe (2008) Arbeitsgemeinschaft für die Reinhaltung der Elbe. Zahlentafeln. http://www.arge-elbe.de (2010-06-16)

  • Arhonditsis GB, Brett MT (2004) Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Mar Ecol Prog Ser 271:13–26

    Article  Google Scholar 

  • Baird ME, Emsley SM (1999) Towards a mechanistic model of plankton population dynamics. J Plankton Res 21:85–126

    Article  Google Scholar 

  • Behrendt H (2008) Auswirkungen des Globalen Wandels auf die Nährstoffeinträge und Frachten im Elbeeinzugsgebiet. In: Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet—Risiken und Optionen. Schlussbericht zum BMBF-Vorhaben GLOWA-Elbe II, Kapitel 4.1

  • Behrendt H, Opitz D, Schmoll O, Scholz G (2004) Einzugsgebietsbezogene Nährstoffeinträge und frachten. In: Becker A, Lahmer W (eds) Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee-Verlag, Berlin, pp 127–151

    Google Scholar 

  • Blazejczak J, Gornig M, Schulz E(2008) Szenarien zur Demographie und Ökonomie in der Elbe Region. In: Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet—Risiken und Optionen. Schlussbericht zum BMBF Vorhaben GLOWA Elbe II, Kapitel 2.3

  • Böhme M (2006) Distribution of water quality parameters in two cross-sections of the river Elbe measured with high local, temporal, and analytic resolution. Acta hydrochimica et hydrobiologica 34:201–213

    Article  Google Scholar 

  • Brunke M (2006) Meio- und Makrofauna des Buhnenfeldes. In: Pusch M, Fischer H (eds) Stoffdynamik und Habitatstruktur in der Elbe—Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weissensee Verlag, Berlin, pp 120–139

    Google Scholar 

  • Canale RP (1976) Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor

    Google Scholar 

  • Caraco NF, Cole JJ, Strayer DL (2006) Top-down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr 51:664–670

    Article  Google Scholar 

  • Cerco CF, Noel MR, Tillman DH (2004) A practical application of Droop nutrient kinetics. Water Res 38:4446–4454

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A (2007) Regional climate projections. In: Solomon S, Qin D, Mannaning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL et al (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Conrad T, Hattermann F (2008) Simulation von räumlich differenzierten Abflussdargebotsszenarien und landwirtschaftlichen Ertragspotentialen für das Elbegebiet mit dem ökohydrologischen Modell SWIM. In: Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet—Risiken und Optionen. Schlussbericht zum BMBF-Vorhaben GLOWA-Elbe II, Kapitel 2.2

  • DeAngelis DL, Mooij WM (2003) In praise of mechanistically rich models. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton

    Google Scholar 

  • Deutsch B, Voss M, Fischer H (2009) Nitrogen transformation processes in the Elbe River: distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquat Sci 71:228–237

    Article  CAS  Google Scholar 

  • Di Toro DM (1980) Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics. Ecol Model 8:201–218

    Article  CAS  Google Scholar 

  • Ducharne A, Baubion C, Beaudoin N, Benoit M, Billen G, Brisson N, Garnier J, Kieken H, Lebonvallet S, Ledoux E, Mary B, Mignolet C, Poux X, Sauboua E, Schott C, Théry S, Viennot P (2007) Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes. Sci Total Environ 375:292–311

    Article  CAS  Google Scholar 

  • Dumont HJ, van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97

    Article  Google Scholar 

  • Elliott JA, Thackeray SJ, Huntinford C, Jones RG (2005) Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshw Biol 50:1404–1411

    Article  Google Scholar 

  • Ellner SP, Guckenheimer J (2006) Dynamic models in biology. Princeton University Press, Princeton

    Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona F, Velichko AA (2007) Ecosystems, their properties, goods, and services. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds), Cambridge University Press, Cambridge, pp 211–272

  • Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol Oceanogr 40(4):750–765

    Article  CAS  Google Scholar 

  • Gentile JH, Maloney TE (1969) Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs. Can J Microbiol 15:165–173

    Article  CAS  Google Scholar 

  • Gerstengarbe F-W, Werner PC, Orlowsky B, Wodinski M (2008) Modellierung der regionalen Klimaentwicklung. In: Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet—Risiken und Optionen. Schlussbericht zum BMBF-Vorhaben GLOWA-Elbe II, Kapitel 2.1

  • Hagemann S, Jacob D (2007) Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Clim Change 81:309–327

    Article  Google Scholar 

  • Hartje V (2008) Regionalisierung der Szenarioanalyse (der Antriebskräfte und des Nutzungsdruckes) des globalen Wandels für die Wasserwirtschaft. In: Wirkungen des globalen Wandels auf den Wasserkreislauf im Elbegebiet—Risiken und Optionen. Schlussbericht zum BMBF-Vorhaben GLOWA-Elbe II, Kapitel 2

  • Hattermann FF, Gömann H, Conradt T, Kaltofen M, Kreins P, Wechsung F (2007) Impacts of global change on water-related sectors and society in a trans-boundary central European river basin—Part 1: project framework and impacts on agriculture. Adv Geosci 11:85–92

    Article  Google Scholar 

  • Hayward RS, Gallup DN (1976) Feeding, filtering and assimilation in Daphnia schodleri Sars as affected by environmental conditions. Archiv für Hydrobiologie 77:139–163

    Google Scholar 

  • Hilferink M, Rietveld P (1999) LAND USE SCANNER: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Inf Syst 1:155–177

    Article  Google Scholar 

  • Holst H (2006) Zooplankton im Pelagial des Hauptstroms. In: Pusch M, Fischer H (eds) Stoffdynamik und Habitatstruktur in der Elbe—Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee Verlag, Berlin, pp 56–64

    Google Scholar 

  • Holst H, Zimmermann-Timm H, Kausch H (2002) Longitudinal and transverse distribution of plankton rotifers in the potamal of the river Elbe (Germany) during late summer. Int Rev Hydrobiol 87:267–280

    Article  Google Scholar 

  • IKSE (2005) Die Elbe und ihr Einzugsgebiet. International Commission for the Protection of the Elbe (ed), Magdeburg, 258 p

  • Jeppesen E, Sondergaard M, Jensen JP et al (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771

    Article  CAS  Google Scholar 

  • Jueg U, Zettler M (2004) Die Molluskenfauna der Elbe in Mecklenburg-Vorpommern mit Erstnachweis der Grobgerippten Körbchenmuschel Corbicula fluminea (O.F. Müller 1756). Mitteilungen der Naturforschenden Gesellschaft West-Mecklenburg 4(1):85–89

    Google Scholar 

  • Justic D, Turner RE, Rabalais NN (2003) Climatic influences on riverine nitrate flux: implications for coastal marine eutrophication and hypoxia. Estuaries 26:1–11

    Article  CAS  Google Scholar 

  • Kirchesch V, Schöl A (1999) Das Gewässergütemodell QSim—ein Instrument zur Simulation und Prognose des Stoffhaushaltes und der Planktondynamik von Fließgewässern. Hydrologie und Wasserbewirtschaftung 43:302–308

    CAS  Google Scholar 

  • Kronvang B, Jeppesen E, Conley DJ, Søndergaard M, Larsen SA, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288

    Article  CAS  Google Scholar 

  • Krysanova V, Hattermann F, Wechsung F (2005) Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrol Process 19:763–783

    Article  CAS  Google Scholar 

  • Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73

    Article  CAS  Google Scholar 

  • Max-Planck-Institut für Meteorologie (ed) (2006) Klimaprojektionen für das 21. Jahrhundert. Max-Planck-Institut für Meteorologie, Hamburg

    Google Scholar 

  • Mischke U (2006) Bundesweiter Praxistest eines Bewertungsverfahren für Phytoplankton in Fließgewässern Deutschlands zur Umsetzung der EU-Wasserrahmenrichtlinie—Verfahrensvereinfachung und -überprüfung mit Handbuchentwurf. LAWA-Projekt O 3.05, LAWA (Länderarbeitsgemeinschaft Wasser). IGB, Berlin-Friedrichshagen

  • Mischke U, Behrendt H (2007) Handbuch zum Bewertungsverfahren von Fließgewässern mittels Phytoplankton zur Umsetzung der EU-WRRL in Deutschland. Weißensee Verlag, Berlin 88 p

    Google Scholar 

  • Nakicenovic N, Swart R (2000) Emission scenarios. IPCC Special Report. Cambridge University Press, UK

    Google Scholar 

  • Nicklisch A, Fietz S (2001) The influence of light fluctuations on growth and photosynthesis of Stephanodiscus neoastraea and Planktothrix agardhii. Archiv für Hydrobiologie 151:141–156

    Google Scholar 

  • Nicklisch A, Tippmann P, Feyerabend R (1992) Zur Kalkulation der Wachstumsraten von Phytoplanktonpopulationen. Deutsche Gesellschaft für Limnologie (ed), Erweiterte Zusammenfassung der Jahrestagung in Konstanz, pp 121–125

  • Ollinger D (1999) Modellierung von Temperatur, Turbulenz und Algenwachstum mit einem gekoppelten physikalisch-biologischen Modell. Doctoral thesis, Universität Heidelberg

  • Oppermann R (1989) Eindimensionale Simulation allmählich veränderlicher instationärer Fließvorgänge in Gewässernetzen. Verlag für Bauwesen, Berlin

    Google Scholar 

  • Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–89

    Article  Google Scholar 

  • Pusch M, Andersen HE, Bäthe J (2009) Rivers of the Central European Highlands and Plains. In: Tockner K, Robinson C, Uehlinger U et al (eds) Rivers of Europe. Elsevier, Amsterdam

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS, Descy J-P (1996) The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie Supplement 113/Large Rivers 10:161–187

    Google Scholar 

  • Rinke K (2006) Species-oriented model approaches to Daphnia spp.: linking the individual level to the population level. Doctoral Dissertation, Technical University Dresden

  • Roelke DL, Eldridge PM, Cifuentes LA (1999) A model of phytoplankton competition for limiting and nonlimiting nutrients: implications for development of estuarine and nearshore management schemes. Estuaries 22:94–104

    Article  Google Scholar 

  • Rothhaupt KO (1990) Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol Oceanogr 35:24–32

    Article  Google Scholar 

  • Salmaso N, Braioni MG (2008) Factors controlling the seasonal development and distribution of the phytoplankton community in the lowland course of a large river in Northern Italy (River Adige). Aquat Ecol 42:533–545

    Article  CAS  Google Scholar 

  • Schöl A, Kirchesch V, Bergfeld T, Schöll F, Borcherding J, Müller D (2002) Modelling the Chlorophyll a content of the River Rhine—interaction between riverine algal production and population biomass of grazers, rotifers and zebra mussel, Dreissena polymorpha. Int Rev Hydrobiol 87:295–317

    Article  Google Scholar 

  • Schöl A, Eidner R, Böhme M, Kirchesch V (2006a) Integrierte Modellierung der Wasserbeschaffenheit mit QSim. In: Pusch M, Fischer H (eds) Stoffdynamik und Habitatstruktur in der Elbe.—Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee Verlag, Berlin, pp 233–242

    Google Scholar 

  • Schöl A, Eidner R, Böhme M, Kirchesch V (2006b) Einfluss der Buhnenfelder auf die Wasserbeschaffenheit der Mittleren Elbe. In: Pusch M, Fischer H (eds) Stoffdynamik und Habitatstruktur in der Elbe.—Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee Verlag, Berlin, pp 243–263

    Google Scholar 

  • Schöll F (2000) Temperature as a regulative factor for the dispersal of Corbicula fluminea (O.F. Müller 1774). Hydrologie und Wasserbewirtschaftung 44:318–321

    Google Scholar 

  • Schotten CGJ, Goetgeluk R, Hilferink M, Rietveld P, Scholten HJ (2001) Residential construction, land use and the environment. Simulations for the Netherlands using a GIS-based land use model. Environ Model Assess 6:133–143

    Article  Google Scholar 

  • Schwartz R (2006) Entstehung und Gliederung des Flusslaufs. In: Pusch M, Fischer H (eds) Stoffdynamik und Habitatstruktur in der Elbe.—Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Weißensee Verlag, Berlin, pp 7–14

    Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Sommer U (1991) Growth and survival strategies of planktonic diatoms. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Sommer U (1994) Planktologie. Springer, Berlin

    Google Scholar 

  • Straškraba M, Gnauck A (1983) Aquatische Ökosysteme—Modellierung und Simulation. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Viner D (2002) A qualitative assessment of the sources of uncertainty in climate change impacts assessment studies. Adv Glob Change Res 10:139–149

    Article  Google Scholar 

  • Viney NR, Bates BC, Charles SP, Webster IT, Bormans M (2007) Modelling adaptive management strategies for coping with the impacts of climate variability and change on riverine algal blooms. Glob Change Biol 13:2453–2465

    Article  Google Scholar 

  • Vollenweider RA (1985) Elemental and biochemical composition of plankton biomass; some comments and explorations. Archiv für Hydrobiologie 105:11–29

    CAS  Google Scholar 

  • Walz N (1993) Carbon metabolism and population dynamics of Brachionus angularis and Keratella cochlearis. In: Walz N (ed) Plankton regulation dynamics. Experiments and models in rotifer continuous cultures. Springer, Berlin, pp 89–105

    Google Scholar 

  • Werner P, Gerstengarbe F-W (1997) Proposal for the development of climate scenarios. Clim Res 8:171–182

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. J Hydrol Sci 54:101–123

    Article  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    Article  Google Scholar 

  • Williams BJ (2006) Hydrobiological modelling. University of Newcastle, NSW; ISBN:978-1-84728-960-5; http://www.lulu.com (2010-06-16)

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254

    Article  Google Scholar 

Download references

Acknowledgments

This study has been carried out in the framework of the BMBF-funded project GLOWA-Elbe (Project No. 01LW0314). Input data for model validation and scenario simulations have been provided by the project partners and the following institutions: Deutscher Wetterdienst, ARGE ELBE, Brandenburg State Office for Environment (monitoring station Cumlosen), Czech Hydro-Meteorological Institute. We thank Johan Mooij for improving the language of the manuscript and two anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiel, K., Becker, A., Kirchesch, V. et al. Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Change 11, 405–421 (2011). https://doi.org/10.1007/s10113-010-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-010-0152-2

Keywords

Navigation