Skip to main content
Log in

Influence of information overload on operator’s user experience of human–machine interface in LED manufacturing systems

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

This paper reports on an experimental study on human–machine interface in LED manufacturing systems to measure the influence of information overload on user experience. The results are based on cognitive ergonomics. The experiment used eye-tracking methods and a questionnaire to gather data. The independent variables were interface complexity and user background. Interface complexity had three levels: high interface complexity, moderate interface complexity and low interface complexity. User background had two levels: the novice group and the expert group. The dependent variables included time to first fixation, fixations before and subjective feelings. A total of 38 operators participated in the experiment, and the results showed that (1) interface complexity caused a significant difference in time to first fixation (P < 0.05) and fixations before (P < 0.05). Furthermore, the results revealed significant differences between high complexity interfaces compared to low complexity interfaces (P < 0.05). However, no significant differences were observed between moderate and low complexity interfaces or between moderate and high complexity interfaces (P > 0.05); (2) user background significantly affected the user experience; (3) within the same complexity level, expert operators’ cognitive workload was significantly lower than that of novice operators; and (4) there was no significant relationship between the interface complexity and the user’s background. The study concludes that because interface complexity has a significant effect on the time taken to locate the target button on the screen, interface design should be as simple as possible, while still providing the necessary level of functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Augustyniak P, Tadeusiewicz R (2006) Assessment of electrocardiogram visual interpretation strategy based on scanpath analysis. Physiol Meas 27(7):597–608. doi:10.1088/0967-3334/27/7/004

    Article  Google Scholar 

  • Bargas-Avila JA, Hornbæk K (2011) Old wine in new bottles or novel challenges: a critical analysis of empirical studies of user experience. In: Proceedings of the SIGCHI conference on human factors in computing systems, 2011. ACM, pp 2689–2698

  • Burch M, Heinrich J, Konevtsova N, Hoferlin M, Weiskopf D (2011) Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Trans Vis Comput Graph 17(12):2440–2448

    Article  Google Scholar 

  • Chen L, Pu P (2014) Experiments on user experiences with recommender interfaces. Behav Inf Technol 33(4):372–394. doi:10.1080/0144929x.2012.719034

    Article  Google Scholar 

  • Chevalier A, Maury AC, Fouquereau N (2014) The influence of the search complexity and the familiarity with the website on the subjective appraisal of aesthetics, mental effort and usability. Behav Inf Technol 33(2):116–131. doi:10.1080/0144929x.2013.819936

    Article  Google Scholar 

  • Desmet P, Hekkert P (2007) Framework of product experience. Int J Des 1(1):57–66

    Google Scholar 

  • Duchowski AT (2002) A breadth-first survey of eye-tracking applications. Behav Res Methods Instrum Comput 34(4):455–470. doi:10.3758/Bf03195475

    Article  Google Scholar 

  • Goldberg J, Helfman J (2011) Eye tracking for visualization evaluation: reading values on linear versus radial graphs. Inf Vis 10(3):182–195. doi:10.1177/1473871611406623

    Article  Google Scholar 

  • Goldberg JH, Kotval XP (1999) Computer interface evaluation using eye movements: methods and constructs. Int J Ind Ergon 24(6):631–645. doi:10.1016/S0169-8141(98)00068-7

    Article  Google Scholar 

  • Hornbaek K (2006) Current practice in measuring usability: challenges to usability studies and research. Int J Hum Comput Stud 64(2):79–102. doi:10.1016/j.ijhcs.2005.06.002

    Article  Google Scholar 

  • ISO W (1998) 9241-11. Ergonomic requirements for office work with visual display terminals (VDTs). The international organization for standardization, London

    Google Scholar 

  • Ito K, Speer SR (2008) Anticipatory effects of intonation: eye movements during instructed visual search. J Mem Lang 58(2):541–573. doi:10.1016/j.jml.2007.06.013

    Article  Google Scholar 

  • Liu P, Li Z (2012) Task complexity: a review and conceptualization framework. Int J Ind Ergon 42(6):553–568

    Article  Google Scholar 

  • Liu HC, Lai ML, Chuang HH (2011) Using eye-tracking technology to investigate the redundant effect of multimedia web pages on viewers’ cognitive processes. Comput Hum Behav 27(6):2410–2417. doi:10.1016/j.chb.2011.06.012

    Article  Google Scholar 

  • Lu WX, Li M, Lu SF, Song YY, Yin JJ, Zhong N (2011) Visual search strategy and information processing mode: an eye-tracking study on web pages under information overload. Commun Comput Inf Sci 86:153–159

    Article  Google Scholar 

  • Maldonado A, Garca JL, Alvarado A, Balderrama CO (2013) A hierarchical fuzzy axiomatic design methodology for ergonomic compatibility evaluation of advanced manufacturing technology. Int J Adv Manuf Technol 66(1–4):171–186. doi:10.1007/s00170-012-4316-8

    Article  Google Scholar 

  • Nielsen J (1994) Usability engineering. Elsevier, Amsterdam

    Google Scholar 

  • Norman DA (2002) The design of everyday things. Basic books, New York

    Google Scholar 

  • Norman DA (2004) Emotional design: why we love (or hate) everyday things. Basic books, New York

    Google Scholar 

  • Oborski P (2003) Social-technical aspects in modern manufacturing. Int J Adv Manuf Technol 22(11–12):848–854. doi:10.1007/s00170-003-1573-6

    Article  Google Scholar 

  • Oborski P (2004) Man-machine interactions in advanced manufacturing systems. Int J Adv Manuf Technol 23(3–4):227–232. doi:10.1007/s00170-003-1574-5

    Article  Google Scholar 

  • Park J, Han SH, Kim HK, Oh S, Moon H (2013) Modeling user experience: a case study on a mobile device. Int J Ind Ergon 43(2):187–196. doi:10.1016/j.ergon.2013.01.005

    Article  Google Scholar 

  • Pernice K, Nielsen J (2009) Eyetracking methodology: how to conduct and evaluate usability studies using eyetracking. Nielsen Norman Group Technical Report

  • Ramakrisnan P, Jaafar A, Razak FHA, Ramba DA (2012) Evaluation of user interface design for leaning management system (LMS): investigating student’s eye tracking pattern and experiences. Procedia Soc Behav Sci 67:527–537. doi:10.1016/j.sbspro.2012.11.357

    Article  Google Scholar 

  • Roth SP, Tuch AN, Mekler ED, Bargas-Avila JA, Opwis K (2013) Location matters, especially for non-salient features—An eye-tracking study on the effects of web object placement on different types of websites. Int J Hum Comput Stud 71(3):228–235. doi:10.1016/j.ijhcs.2012.09.001

    Article  Google Scholar 

  • Roto V, Vermeeren A, Väänänen-Vainio-Mattila K, Law E (2011) User experience evaluation—which method to choose? In: Human–computer interaction—INTERACT 2011. Springer, pp 714–715

  • Rubio S, Diaz E, Martin J, Puente JM (2004) Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol Int Rev 53(1):61–86. doi:10.1111/j.1464-0597.2004.00161.x

    Article  Google Scholar 

  • Savioja P, Liinasuo M, Koskinen H (2014) User experience: does it matter in complex systems? Cognit Technol Work 16(4):429–449

    Article  Google Scholar 

  • Seffah A, Donyaee M, Kline RB, Padda HK (2006) Usability measurement and metrics: a consolidated model. Softw Qual J 14(2):159–178. doi:10.1007/s11219-006-7600-8

    Article  Google Scholar 

  • Shackel B (1991) Usability-context, framework, definition, design and evaluation. Human factors for informatics usability. Cambridge University Press, Cambridge, pp 21–34

    Google Scholar 

  • Shin DH, Biocca F, Choo H (2013) Exploring the user experience of three-dimensional virtual learning environments. Behav Inf Technol 32(2):203–214. doi:10.1080/0144929x.2011.606334

    Article  Google Scholar 

  • Spiekermann S, Korunovska J (2014) The importance of interface complexity and entropy for online information sharing. Behav Inf Technol 33(6):636–645. doi:10.1080/0144929x.2013.845910

    Article  Google Scholar 

  • Stickel C, Ebner M, Holzinger A (2010) The XAOS metric—understanding visual complexity as measure of usability. Lect Notes Comput Sci 6389:278–290

    Article  Google Scholar 

  • Tuch AN, Bargas-Avila JA, Opwis K, Wilhelm FH (2009) Visual complexity of websites: effects on users’ experience, physiology, performance, and memory. Int J Hum Comput Stud 67(9):703–715. doi:10.1016/j.ijhcs.2009.04.002

    Article  Google Scholar 

  • Tuch AN, Kreibig SD, Roth SP, Bargas-Avila JA, Opwis K, Wilhelm FH (2011) The role of visual complexity in affective reactions to webpages: subjective, eye movement, and cardiovascular responses. IEEE Trans Affect Comput 2(4):230–236. doi:10.1109/Taff-C.2011.18

    Article  Google Scholar 

  • Tuch AN, Presslaber EE, Stocklin M, Opwis K, Bargas-Avila JA (2012) The role of visual complexity and prototypicality regarding first impression of websites: working towards understanding aesthetic judgments. Int J Hum Comput Stud 70(11):794–811. doi:10.1016/j.ijhcs.2012.06.003

    Article  Google Scholar 

  • Veneri G, Pretegiani E, Rosini F, Federighi P, Federico A, Rufa A (2012) Evaluating the human ongoing visual search performance by eye tracking application and sequencing tests. Comput Methods Prog Biomed 107(3):468–477. doi:10.1016/j.cmpb.2011.02.006

    Article  Google Scholar 

  • Vermeeren AP, Law EL-C, Roto V, Obrist M, Hoonhout J, Väänänen-Vainio-Mattila K (2010) User experience evaluation methods: current state and development needs. In: Proceedings of the 6th Nordic conference on human–computer interaction: extending boundaries, 2010. ACM, pp 521–530

  • Yockey HP (2002) Information theory, evolution and the origin of life. Inf Sci 141(3–4):219–225. doi:10.1016/S0020-0255(02)00173-1

    Article  MATH  Google Scholar 

  • Zhang ZF (2012) Manufacturing complexity and its measurement based on entropy models. Int J Adv Manuf Technol 62(9–12):867–873. doi:10.1007/s00170-011-3872-7

    Article  Google Scholar 

  • Zulch G, Stowasser S (2003) Eye tracking for evaluating industrial human–computer interfaces. In: Mind’s eye: cognitive and applied aspects of eye movement research, pp 531–553. doi:10.1016/B978-044451020-4/50029-3

Download references

Acknowledgments

We thank our reviewers for their valuable and insightful comments. This paper is financially supported by the Fundamental Research Funds for the Central Universities HUST: (2014QN017). Also, we thank King Far International Inc. for assistance with the research device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhu, Z., Cao, H. et al. Influence of information overload on operator’s user experience of human–machine interface in LED manufacturing systems. Cogn Tech Work 18, 161–173 (2016). https://doi.org/10.1007/s10111-015-0352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-015-0352-0

Keywords

Navigation