Skip to main content
Log in

Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the reformulation of integer linear programs by means of a mixed integer linear program with fewer integer variables. Such reformulations can be solved efficiently with mixed integer linear programming techniques. We exhibit examples that demonstrate how integer programs can be reformulated using far fewer integer variables. To this end, we introduce a generalization of total unimodularity called the affine TU-dimension of a matrix and study related theory and algorithms for determining the affine TU-dimension of a matrix. We also present bounds on the number of integer variables needed to represent certain integer hulls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1–3), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, S., Trotter, L.E.: Optimization and operations research. In: Proceedings of a Workshop Held at the University of Bonn, October 2–8, 1977, chapter Integer rounding and polyhedral decomposition for totally unimodular systems, pp. 15–23. Springer Berlin Heidelberg, (1978)

  3. Carr, R.D., Konjevod, G.: Polyhedral combinatorics. In: Greenberg, H. (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research, pp. 1–48. Springer, Berlin (2004)

    Google Scholar 

  4. Conforti, M., Cornuéjols, G., Vušković, K.: Balanced matrices. Discrete Math. 306(19–20), 2411–2437 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eggan, L., Plantholt, M.: The chromatic index of nearly bipartite multigraphs. J. Comb. Theory Ser. B 40(1), 71–80 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gijswijt, D.: Integer decomposition for polyhedra defined by nearly totally unimodular matrices. SIAM J. Discrete Math. 19(3), 798–806 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7(3), 1351–1364 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hibi, T., Higashitani, A., Katthän, L., Okazaki, R.: Normal cyclic polytopes and cyclic polytopes that are not very ample. J. Aust. Math. Soc. 96, 61–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeroslow, R.: On defining sets of vertices of the hypercube by linear inequalities. Discrete Math. 11(2), 119–124 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization - Festschrift for Martin Grötschel, pp. 77–100. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  12. Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex optimization in unimodular linear spaces with applications. SIAM J. Comput. 26(4), 1245–1275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  14. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lodi, A.: Personal communication, 2014 and 2015

  16. Martin, R.K.: Generating alternative mixed-integer programming models using variable redefinition. Oper. Res. 35(6), 820–831 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oriolo, G., Sanità, L., Zenklusen, R.: Network design with a discrete set of traffic matrices. Oper. Res. Lett. 41(4), 390–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Padberg, M.: Total unimodularity and the Euler-subgraph problem. Oper. Res. Lett. 7(4), 173–179 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1986)

    MATH  Google Scholar 

  20. Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28(3), 305–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Comb. Theory Ser. B 49(2), 241–281 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer programs. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008, pp. 431–502. Springer, Berlin (2010)

    Google Scholar 

  23. Veselov, S.I., Gribanov, D.V.: On integer programming with almost unimodular matrices and the flatness theorem for simplices (2015). arXiv:1505.03132 [cs.CG]

  24. Woeginger, G.J., Yu, Z.: On the equal-subset-sum problem. Inf. Process. Lett. 42(6), 299–302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Santanu S. Dey for discussing his idea for the lower bound in Example 8. We owe thanks to Shmuel Onn who made us aware of a much simplified version of the proof of Theorem 18. We also want to express our gratitude to two anonymous reviewers. Their detailed comments and suggestions on an earlier version of the manuscript led to enhancements on the general structure of our paper, as well as greatly improved the paper in many ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hildebrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, J., Hildebrand, R., Weismantel, R. et al. Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix. Math. Program. 169, 565–584 (2018). https://doi.org/10.1007/s10107-017-1147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1147-2

Keywords

Mathematics Subject Classification

Navigation