Skip to main content
Log in

A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a class of matrix spectral norm approximation problems for finding an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, engineering and other areas, such as finding Chebyshev polynomials of matrices and fastest mixing Markov chain models. Based on classical analysis of proximal point algorithms (PPAs) and recent developments on semismooth analysis of nonseparable spectral operators, we propose a semismooth Newton-CG based dual PPA for solving the matrix norm approximation problems. Furthermore, when the primal constraint nondegeneracy condition holds for the subproblems, our semismooth Newton-CG method is proven to have at least a superlinear convergence rate. We also design efficient implementations for our proposed algorithm to solve a variety of instances and compare its performance with the nowadays popular first order alternating direction method of multipliers (ADMM). The results show that our algorithm, which is warm-started with an initial point obtained from the ADMM, substantially outperforms the pure ADMM, especially for the constrained cases and it is able to solve the problems robustly and efficiently to a relatively high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The stopping criteria introduced here are for the convergence analysis of the PPA. Since it is not easy to obtain the upper bound of \(\max \theta _k(y)\), we use (29) to terminate the \(y\)-subproblem in the practical implementation of the dual PPA.

References

  1. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  2. Boyd, S., Diaconis, P., Sun, J., Xiao, L.: Fastest mixing Markov chain on a path. Am. Math. Mon. 113, 70–74 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyd, S., Diaconis, P., Xiao, L.: Fastest mixing Markov chain on a graph. SIAM Rev. 46, 667–689 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C.H., He, B.S., Yuan, X.M.: Matrix completion via alternating direction methods. IMA J. Numer. Anal. 32, 227–245 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Qi, H.-D., Qi, L., Teo, K.-L.: Smooth convex approximation to the maximum eigenvalue function. J. Glob. Optim. 30, 253–270 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis, 2nd edn. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  7. Davis, T.A., Hu, Y.: University of Florida sparse matrix collection (2009)

  8. Ding, C.: An introduction to a class of matrix optimization problems. Ph.D. thesis, National University of Singapore, Singapore (2012)

  9. Ding, C., Sun, D.F., Toh, K.-C.: An introduction to a class of matrix cone programming. Math. Program. Ser. A 144, 141–179 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. Ser. A 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    Google Scholar 

  12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  13. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  14. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non-linéaires. Rev. Française Autom. Inf. Recherche Opérationnelle Anal. Numér. 9, 41–76 (1975)

    MATH  MathSciNet  Google Scholar 

  15. Greenbaum, A., Trefethen, L.N.: GMRES/CR and Arnoldi/Lanczos as matrix approximation problems. SIAM J. Sci. Comput. 15, 359–368 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ha, C.D.: A generalization of the proximal point algorithm. SIAM J. Control Optim. 28, 503–512 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. He, B.S., Liao, L.-Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. Ser. A 92, 103–118 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, vols. I and II. Springer, Berlin (1993)

    Google Scholar 

  20. Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Appl. Math. Optim. 11, 43–56 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang, K.F.: Algorithms for large scale nuclear norm minimization and convex quadractic semidefinite programming problems. Ph.D. thesis. National University of Singapore, Singapore (2012)

  22. Jiang, K.F., Sun, D.F., Toh, K.C.: A partial proximal point algorithm for nuclear norm regularized matrix least squares problems. Math. Program. Comput. 6, 281–325 (2014)

    Article  MathSciNet  Google Scholar 

  23. Jiang, K.F., Sun, D.F., Toh, K.C.: Solving nuclear norm regularized and semidefinite matrix least squares problems with linear equality constraints. In: Bezdek, K., Ye, Y., Deza, A. (eds.) Fields Institute Communications Series on Discrete Geometry and Optimization. Springer, Switzerland (2013)

  24. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7, 367–385 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. II: Applications. Set-Valued Anal. 13, 243–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liese, J., Tichý, P.: On best approximations of polynomials in matrices in the matrix 2-norm. SIAM J. Matrix Anal. Appl. 31, 853–863 (2009)

    Article  MathSciNet  Google Scholar 

  27. Faber, V., Liesen, J., Tichý, P.: On Chebyshev polynomials of matrices. SIAM J. Matrix Anal. Appl. 31, 2205–2221 (2010)

    Article  MATH  Google Scholar 

  28. Liu, Y.-J., Sun, D.F., Toh, K.-C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. Ser. A 133, 399–436 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Meng, F.W., Sun, D.F., Zhao, G.Y.: Semismoothness of solutions to generalized equations and the Moreau–Yosida regularization. Math. Program. Ser. B 104, 561–581 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  31. Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Robinson, S.M.: Local structure of feasible sets in nonlinear programming. II: Nondegeneracy. Math. Program. Stud. 22, 217–230 (1984)

    Article  MATH  Google Scholar 

  33. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  35. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  36. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  37. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  38. Toh, K.-C.: Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim. 14, 670–698 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11–12, 545–581 (1999)

    Article  Google Scholar 

  40. Toh, K.-C., Trefethen, L.N.: The Chebyshev polynomials of a matrix. SIAM J. Matrix Anal. Appl. 20, 400–419 (1999)

    Article  MathSciNet  Google Scholar 

  41. von Neumann, J.: Some matrix inequalities and metrization of metric spaces. Tomsk. Univ. Rev. 1, 286–300 (1937)

    Google Scholar 

  42. Wang, C.J., Sun, D.F., Toh, K.-C.: Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Optim. 20, 2994–3013 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Yang, J.F., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yosida, K.: Functional Analysis. Springer, Berlin (1964)

    Google Scholar 

  47. Zhao, X.-Y., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zietak, K.: Properties of linear approximations of matrices in the spectral norm. Linear Algebra Appl. 183, 41–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Chen.

Additional information

Caihua Chen is supported in part by the National Science Foundation of Jiangsu Province under Project Grant No. BK20130550, and the National Natural Science Foundation of China under Project Grant No. 71271112. Yong-Jin Liu is supported in part by the National Natural Science Foundation of China under Project Grant No. 11001180 and 11371255, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Program for Liaoning Excellent Talents in Universities. Defeng Sun is supported in part by Academic Research Fund under Grant R-146-000-149-112. Kim-Chuan Toh is supported in part by Academic Research Fund under Grant R-146-000-168-112.

Appendix: Proof of Proposition 4.1

Appendix: Proof of Proposition 4.1

Let \(\{Y^i\}_{i\ge 1}\) be a sequence converging to \(Y\) such that every element \(Y^i\in \mathcal{D}_{\Pi _{\mathcal{B}}}\). This, by Proposition 2.3(i), implies that \(\Vert Y^i\Vert _*\ne 1\) for each \(i\ge 1\). Let the SVD of \(Y^i\) be \(Y^i = U^i [\mathrm{Diag}(\sigma ^i)\,\, 0] (V^i)^T\). We consider the following three cases.

  1. (i)

    \(\Vert Y\Vert _*<1\). In this case, \(\Pi _\mathcal{B}(\cdot )\) is continuously differentiable at \(Y\) and its generalized Jacobian is a singleton consisting of the identity operator from \(\mathfrak {R}^{m\times n}\) to itself.

  2. (ii)

    \(\Vert Y\Vert _*=1\). Since \(Y\) can be approximated by a sequence in the interior of \(\mathcal{B}\), it follows that the identity operator \(\mathcal{I}\) is always an element of \(\partial _{B}\Pi _\mathcal{B}(Y)\). To obtain the remaining elements, we consider the case in which \(\{Y^i\}\) has an infinite subsequence outside \(\mathcal{B}\). Without loss of generality, we assume that \(\Vert Y^i\Vert _* >1\) for all \(i\). By passing to a subsequence if necessary, we know that there exists a positive integer \(N\in [r,\,m]\) such that \(N= k_1(\sigma ^i)\) for each \(i\). Therefore, one has

    $$\begin{aligned} g^i _k:=(\Pi _{\mathbb {B}}(\sigma ^i))_k \; =\; \left\{ \begin{array}{l@{\quad }l} \sigma _k^i- \frac{1}{N}\Big (\sum _{j=1}^N \sigma ^i_j -1\Big ),&{} \quad 1\le k\le N, \\ 0,&{}\quad \mathrm{otherwise} \end{array} \right. \end{aligned}$$

    and

    $$\begin{aligned} \Pi _{\mathbb {B}}^\prime (\sigma ^i)= \left[ \begin{array}{c@{\quad }c} I_N&{}\quad 0\\ 0&{}\quad 0 \end{array} \right] -\frac{1}{N} \left[ \begin{array}{cc} \mathbf 1 _{N\times N}&{}\quad 0\\ 0&{}\quad 0 \end{array} \right] . \end{aligned}$$

    For each \(i\), it holds that

    $$\begin{aligned} \big (\Omega (\sigma ^i)\big )_{kj}&= \left\{ \begin{array}{cl} 1,&{}\quad \mathrm{if}\,\, k,j\in \alpha _1\cup \alpha _2, \\ {g_k^i\over \sigma _k^i- \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \alpha _1\cup \alpha _2,\,j\in \alpha _3,\\ {g_j^i\over \sigma _j^i- \sigma _{k}^i}, &{}\quad \mathrm{if}\,\, k\in \alpha _3,\, j\in \alpha _1 \cup \alpha _2,\,\\ 0,&{}\quad \mathrm{if}\,\, k, \,j\in \alpha _3, \end{array} \right. \\ \big (\Gamma (\sigma ^i)\big )_{kj}&= \left\{ \begin{array}{cl} {g_k^i + g_k^j\over \sigma _k^i+ \sigma _{j}^i},&{}\quad \mathrm{if}\,\, k,j \in \alpha _1\cup \alpha _2, \\ {g_k^i\over \sigma _k^i+ \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \alpha _1\cup \alpha _2,\,j\in \alpha _3,\\ {g_j^i\over \sigma _k^i+ \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \alpha _3,\,j\in \alpha _1\cup \alpha _2,\\ 0,&{}\quad \mathrm{if}\,\, k,\,j\in \alpha _3 \end{array} \right. \end{aligned}$$

    and

    $$\begin{aligned} \big (\mathcal{F}(\sigma ^i)\big )_{kj} =\left\{ \begin{array}{cl} -{1\over N},&{}\quad \mathrm{if}\,\, k,j\in \alpha _1\cup \alpha _2, \\ 0,&{}\quad \mathrm{otherwise}, \end{array} \right. \big (\Upsilon (\sigma ^i)\big )_{k} =\left\{ \begin{array}{cl} {g_k^i\over \sigma _k^i },&{}\quad \mathrm{if}\,\, k\in \alpha _1\cup \alpha _2, \\ 0,&{}\quad \mathrm{if}\,\, k\in \alpha _3. \end{array} \right. \end{aligned}$$

    Now from Proposition 2.3(i), we know that for any given \(H\in \mathfrak {R}^{m\times n}\),

    $$\begin{aligned} \Pi '_{\mathcal{B}}(Y^i)H = U^i\left[ W^i- \frac{\mathrm{Tr}(\widetilde{H}_{11}^i)}{N}\left[ \begin{array}{cc} I_N&{}0\\ 0&{} 0 \end{array} \right] , \,\, \mathrm{Diag}\big (\Upsilon (\sigma ^i)\big )\widetilde{H}_2^i \right] (V^i)^T, \end{aligned}$$
    (69)

    where the matrix \(W^i\in \mathfrak {R}^{m\times m}\) is defined by

    $$\begin{aligned} W^i=\Omega (\sigma ^i) \circ S(\widetilde{H}_1^i)+ \Gamma (\sigma ^i)\circ T(\widetilde{H}_1^i) \end{aligned}$$

    with \(\widetilde{H}_1^i\in \mathfrak {R}^{m\times m}, \widetilde{H}_2^i\in \mathfrak {R}^{m\times (n-m)}\), \([\widetilde{H}_1^i\,\,\widetilde{H}_2^i]= (U^i)^THV^i\) and \(\widetilde{H}_{11}^i\) being the matrix extracted from the first \(N\) columns and rows of \(\widetilde{H}_1^i\). By simple algebraic computations, we have

    $$\begin{aligned}&\lim _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\alpha _1\alpha _3} = \lim _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\alpha _3\alpha _1}^T = \mathbf 1 _{r\times (m-N)},\\&\lim _{i\rightarrow \infty } \big (\Gamma (\sigma ^i)\big )_{\alpha _1(\alpha _1\cup \alpha _2\cup \alpha _3)} = \big (\Gamma (\sigma ^i)\big )_{(\alpha _1\cup \alpha _2\cup \alpha _3)\alpha _1}^T = \mathbf 1 _{r\times m},\\&\lim _{i\rightarrow \infty } \big (\Upsilon (\sigma ^i)\big )_{\alpha _1} = \mathbf 1 _r. \end{aligned}$$

    Note that \(\left\{ \Big (\big (\Omega (\sigma ^i)\big )_{\alpha _2\alpha _3},\, \big (\Gamma (\sigma ^i)\big )_{\alpha _2\alpha _2},\,\big (\Gamma (\sigma ^i)\big )_{\alpha _2\alpha _3},\, \big (\Upsilon (\sigma ^i)\big )_{\alpha _2}\Big )\right\} _{i\ge 1}\) is bounded and \(\mathcal{S}_N\) is the set of cluster points associated with the sequence. By taking limits on both sides of (69), we are able to establish the conclusion that for any \(\mathcal{V} (\ne \mathcal{I})\in \partial _{B} \Pi _{\mathcal{B}}(Y)\), there exist an integer \(N\in [r,\,m]\), \((\Omega _{\alpha _2\alpha _3}^\infty , \Gamma _{\alpha _2\alpha _2}^\infty ,\Gamma _{\alpha _2\alpha _3}^\infty ,\Upsilon _{\alpha _2}^\infty )\in \mathcal{S}_N\) and singular vector matrices \(U^\infty ,V^\infty \) of \(Y\) such that for any \(H\in \mathfrak {R}^{m\times n}\), (33) is valid.

  3. (iii)

    \(\Vert Y\Vert _*>1\). Taking a subsequence if necessary, we know that there exists a positive integer \(N\in [k_1(\sigma ),k_2(\sigma )]\) such that \(N=k_1(\sigma ^i)\) for each \(i\). Therefore,

    $$\begin{aligned} g^i_k:=(\Pi _{\mathbb {B}}(\sigma ^i)_k= \left\{ \begin{array}{ll} \sigma _k^i - \frac{1}{N}\Big ( \sum _{j=1}^N \sigma _j^i-1\Big ),&{} \quad 1\le k \le N, \\ 0,&{} \quad \mathrm{otherwise} \end{array} \right. \end{aligned}$$

    and

    $$\begin{aligned} \Pi _{\mathbb {B}}'(\sigma ^i)= \left[ \begin{array}{cc} I_N&{}0\\ 0&{} 0 \end{array} \right] -{1\over N} \left[ \begin{array}{cc} \mathbf 1 _{N\times N}&{}0\\ 0&{} 0 \end{array} \right] . \end{aligned}$$

    For each \(i\), it holds that

    $$\begin{aligned} \big (\Omega (\sigma ^i)\big )_{kj}&= \left\{ \begin{array}{cl} 1,&{}\quad \mathrm{if}\,\, k,j\in \gamma _1, \\ {g_k^i\over \sigma _k^i- \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \gamma _1,\,j\in \gamma _2,\\ {g_j^i\over \sigma _j^i- \sigma _{k}^i}, &{}\quad \mathrm{if}\,\, k\in \gamma _2,\,j\in \gamma _1,\\ 0&{}\quad \mathrm{if}\,\, k,\,j\in \gamma _2, \end{array} \right. \\ \big (\Gamma (\sigma ^i)\big )_{kj}&= \left\{ \begin{array}{cl} {g_k^i + g_j^i\over \sigma _k^i+ \sigma _{j}^i},&{}\quad \mathrm{if}\,\, k,j \in \gamma _1, \\ {g_k^i\over \sigma _k^i+ \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \gamma _1,\,j\in \gamma _2,\\ {g_j^i\over \sigma _k^i+ \sigma _{j}^i}, &{}\quad \mathrm{if}\,\, k\in \gamma _2,\,j\in \gamma _1,\\ 0,&{}\quad \mathrm{if}\,\, k,\,j \in \gamma _2 \end{array} \right. \end{aligned}$$

    and

    $$\begin{aligned} \big (\mathcal{F}(\sigma ^i)\big )_{kj} =\left\{ \begin{array}{cl} -{1\over N},&{}\quad \mathrm{if}\,\, k,j\in \gamma _1, \\ 0,&{}\quad \mathrm{otherwise}, \end{array} \right. \quad \big (\Upsilon (\sigma ^i)\big )_{k} =\left\{ \begin{array}{cl} {g_k^i\over \sigma _k^i },&{}\quad \mathrm{if}\,\, k\in \gamma _1, \\ 0,&{}\quad \mathrm{otherwise}. \end{array} \right. \end{aligned}$$

    Then the equality (69) is also valid. Simple calculations show that

    $$\begin{aligned}&\lim \limits _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\beta _1\gamma _2}= \lim \limits _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\gamma _2\beta _1}^T = \Omega _{\beta _1\gamma _2}, \\&\lim \limits _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\beta _2\beta _4}= \lim \limits _{i\rightarrow \infty } \big (\Omega (\sigma ^i)\big )_{\beta _4\beta _2}^T = \Omega _{\beta _2\beta _4}, \\&\lim \limits _{i\rightarrow \infty } \big (\Gamma (\sigma ^i)\big )_{\gamma _1(\gamma _1 \cup \gamma _2)}= \lim \limits _{i\rightarrow \infty } \big (\Gamma (\sigma ^i)\big )_{(\gamma _1\cup \gamma _2)\gamma _1}^T = \Gamma _{\gamma _1({\gamma _1\cup \gamma _2})}, \\&\lim \limits _{i\rightarrow \infty } \big (\Upsilon (\sigma ^i)\big )_{\gamma _1}= \Upsilon _{\gamma _1}. \end{aligned}$$

    Note that \(\left\{ \big (\Omega (\sigma ^i)\big )_{\beta _2\beta _3}\right\} \) is bounded and \(\mathcal{S}_N\) is the set of cluster points associated with the sequence. By taking limits on both sides of (69), we have the conclusion that for any \(\mathcal{V}\in \partial _{B} \Pi _{\mathcal{B}}(Y)\), there exist an integer \(N\in [k_1(\sigma ),\,k_2(\sigma )]\), \(\Omega _{\beta _2\beta _3}^\infty \in \mathcal{S}_N\) and singular vector matrices \(U^\infty ,V^\infty \) of \(Y\) such that for any \(H\in \mathfrak {R}^{m\times n}\), (34) holds. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, YJ., Sun, D. et al. A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems. Math. Program. 155, 435–470 (2016). https://doi.org/10.1007/s10107-014-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0853-2

Keywords

Mathematics Subject Classification

Navigation