Skip to main content
Log in

Exponential weight algorithm in continuous time

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The exponential weight algorithm has been introduced in the framework of discrete time on-line problems. Given an observed process \(\{X_m\}_{m=1,2,\ldots}\) the input at stage m + 1 is an exponential function of the sum \(S_m = \sum_{\ell = 1}^m X_{\ell}\) . We define the analog algorithm for a continuous time process X t and prove similar properties in terms of external or internal consistency. We then deduce results for discrete time from their counterpart in continuous time. Finally we compare this approach to another continuous time approximation of a discrete time exponential algorithm based on the average sum S m /m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., Shapire, R.E.: Gambling in a rigged casino: the adversarial multi-armed bandit problem. Proceedings of the 36th annual IEEE symposium on foundations of computer science, pp. 322–331 (1995)

  2. Auer P., Cesa-Bianchi N., Freund Y. and Shapire R.E. (2002). The non-stochastic multiarmed bandit problem. SIAM J. Comput. 32: 48–77

    Article  MATH  MathSciNet  Google Scholar 

  3. Benaim M., Hofbauer J. and Sorin S. (2005). Stochastic approximations and differential inclusions. SIAM J. Opt. Control 44: 328–348

    Article  MATH  MathSciNet  Google Scholar 

  4. Benaim M., Hofbauer J., Sorin S. (2006) Stochastic approximations and differential inclusions. Part II: applications. Math. Oper. Res. 31: 673–695

    Article  MATH  MathSciNet  Google Scholar 

  5. Blackwell D. (1956). An analog of the minmax theorem for vector payoffs. Pac. J. Math. 6: 1–8

    MATH  MathSciNet  Google Scholar 

  6. Brezis H. and Lions P.-L. (1978). Produits infinis de résolvantes. Israel J. Math. 29: 329–345

    Article  MATH  MathSciNet  Google Scholar 

  7. Cesa-Bianchi N. and Lugosi G. (2003). Potential-based algorithms in on-line prediction and game theory. Mach. Learn. 51: 239–261

    Article  MATH  Google Scholar 

  8. Foster D. and Vohra R. (1998). Asymptotic calibration. Biometrika 85: 379–390

    Article  MATH  MathSciNet  Google Scholar 

  9. Foster D. and Vohra R. (1999). Regret in the on-line decision problem. Games Econ. Behav. 29: 7–35

    Article  MATH  MathSciNet  Google Scholar 

  10. Freund Y. and Shapire R.E. (1999). Adaptive game playing using multiplicative weights. Games Econ. Behav. 29: 79–103

    Article  MATH  Google Scholar 

  11. Fudenberg D. and Levine D.K. (1995). Consistency and cautious fictitious play. J. Econ. Dyn. Control 19: 1065–1089

    Article  MATH  MathSciNet  Google Scholar 

  12. Fudenberg D. and Levine D.K. (1999). Conditional universal consistency. Games Econ. Behav. 29: 104–130

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall P., Heyde C. (1980) Martingale limit theory and its applications. Academic, London

    Google Scholar 

  14. Hart S. and Mas-Colell A. (2000). A simple adaptive procedure leading to correlated equilibria. Econometrica 68: 1127–1150

    Article  MATH  MathSciNet  Google Scholar 

  15. Hart S. and Mas-Colell A. (2001). A general class of adaptive strategies. J. Econ. Theory 98: 26–54

    Article  MATH  MathSciNet  Google Scholar 

  16. Hart S. and Mas-Colell A. (2003). Regret-based continuous time dynamics. Games Econ. Behav. 45: 375–394

    Article  MATH  MathSciNet  Google Scholar 

  17. Littlestone N. and Warmuth M.K. (1994). The weighted majority algorithm. Inform. Comput. 108: 212–261

    Article  MATH  MathSciNet  Google Scholar 

  18. Seneta E. (1981). Non-negative matrices and Markov chains. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Sorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorin, S. Exponential weight algorithm in continuous time. Math. Program. 116, 513–528 (2009). https://doi.org/10.1007/s10107-007-0111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0111-y

Keywords

Mathematics Subject Classification (2000)

Navigation