Skip to main content
Log in

A mesh-independence result for semismooth Newton methods

  • Published:
Mathematical Programming Submit manuscript

Abstract.

For a class of semismooth operator equations a mesh independence result for generalized Newton methods is established. The main result states that the continuous and the discrete Newton process, when initialized properly, converge q-linearly with the same rate. The problem class considered in the paper includes MCP-function based reformulations of first order conditions of a class of control constrained optimal control problems for partial differential equations for which a numerical validation of the theoretical results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E.L., Böhmer, K., Potra, F.A., Rheinboldt, W.C.: A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23 (1), 160–169 (1986)

    MATH  Google Scholar 

  2. Alt, W.: Discretization and mesh-independence of Newton’s method for generalized equations. In: A. Fiacco (ed.), Mathematical programming with data perturbations. Dekker, New York, 1998, pp. 1–30

  3. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comp. Optim. Appl. 23 (2), 201–229 (2002)

    Article  MATH  Google Scholar 

  4. Argyros, I.K.: A mesh-independence principle for nonlinear operator equations and their discretizations under mild differentiability conditions. Computing 45 (3), 265–268 (1990)

    MATH  Google Scholar 

  5. Argyros, I.K.: The asymptotic mesh independence principle for Newton-Galerkin methods using weak hypotheses on the Fréchet derivatives. Math. Sci. Res. Hot-Line 4 (11), 51–58 (2000)

    MATH  Google Scholar 

  6. Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J. Optim. 7 (2), 445–462 (1997)

    Article  MATH  Google Scholar 

  7. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (4), 1200–1216 (2000)

    Article  MATH  Google Scholar 

  8. De Figueiredo, D.G.: Lectures on the Ekeland Variational Principle with applications and detours. Springer Verlag, Berlin, 1989.

  9. Deuflhard, P., Potra, F.A.: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem. SIAM J. Numer. Anal. 29 (5), 1395–1412 (1992)

    MATH  Google Scholar 

  10. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Uniform convergence and mesh independence of Newton’s method for discretized variational problems. SIAM J. Control Optim. 39 (3), 961–980 (2000)

    Article  MATH  Google Scholar 

  11. Facchinei, F., Fischer, A., Kanzow, C., Peng, J.-M.: A simply constrained optimization reformulation of KKT systems arising from variational inequalities. Appl. Math. Optim. 40 (1), 19–37 (1999)

    Article  MATH  Google Scholar 

  12. Falk, R.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–44 (1973)

    MATH  Google Scholar 

  13. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (3), 865–888 (2003)

    Article  Google Scholar 

  14. Kelley, C.T., Sachs, E.W.: Mesh independence of the gradient projection method for optimal control problems. SIAM J. Control Optim. 30 (2), 477–493 (1992)

    MATH  Google Scholar 

  15. Kummer, B.: Newton’s method for nondifferentiable functions. In: J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatzsch, K. Tammer, M. Vlach, K. Zimmermann (eds.), Advances in Mathematical Optimization, Akademie-Verlag, Berlin, 1988, pp. 114–125

  16. Kummer, B.: Generalized Newton and NCP-methods: convergence, regularity, actions. Discuss. Math. Differ. Incl. Control Optim. 20 (2), 209–244 (2000)

    MATH  Google Scholar 

  17. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1970 original

  18. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1), 227–244 (1993)

    MATH  Google Scholar 

  19. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58 (3), 353–367 (1993)

    MATH  Google Scholar 

  20. Robinson, S.M.: Newton’s method for a class of nonsmooth functions. Set-Valued Anal. 2 (1-2), 291–305 (1994), Set convergence in nonlinear analysis and optimization

  21. Ulbrich, M.: Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. Habilitationsschrift, Zentrum Mathematik, Technische Universität München, München, Germany, 2001

  22. Ulbrich, M.: On a nonsmooth Newton method for nonlinear complementarity problems in function space with applications to optimal control. In: M.C. Ferris, O.L. Mangasarian, J.-S. Pang (eds.), Complementarity: Applications, algorithms and extensions (Madison, WI, 1999), Kluwer Acad. Publ., Dordrecht, 2001, pp. 341–360

  23. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (3), 805–842 (2003)

    Article  MATH  Google Scholar 

  24. Ulbrich, M., Ulbrich, S.: Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Contr. Optim. 38 (6), 1938–1984 (2000)

    Article  MATH  Google Scholar 

  25. Volkwein, S.: Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces. SIAM J. Contr. Optim. 38 (3), 767–785 (2000)

    Article  MATH  Google Scholar 

  26. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B. Springer Verlag, Berlin, 1990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ulbrich.

Additional information

Mathematics Subject Classification (1991):65J15, 65K10, 49M25, 90C33

Accepted: April 19, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintermüller, M., Ulbrich, M. A mesh-independence result for semismooth Newton methods. Math. Program., Ser. A 101, 151–184 (2004). https://doi.org/10.1007/s10107-004-0540-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0540-9

Keywords

Navigation