Skip to main content
Log in

In vitro photoinactivation effectiveness of a portable LED device aimed for intranasal photodisinfection and a photosensitizer formulation comprising methylene blue and potassium iodide against bacterial, fungal, and viral respiratory pathogens

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Antimicrobial photodynamic therapy (aPDT) can be a viable option for management of intranasal infections. However, there are light delivery, fluence, and photosensitizer-related challenges. We report in vitro effectiveness of an easily fabricated, low-cost, portable, LED device and a formulation comprising methylene blue (MB) and potassium iodide (KI) for photoinactivation of pathogens of the nasal cavity, namely, methicillin-resistant Staphylococcus aureus, antibiotic-resistant Klebsiella pneumoniae, multi-antibiotic-resistant Pseudomonas aeruginosa, Candida spp., and SARS-CoV-2.

In a 96-well plate, microbial suspensions incubated with 0.005% MB alone or MB and KI formulation were exposed to different red light (~ 660 ± 25 nm) fluence using the LED device fitted to each well. Survival loss in bacteria and fungi was quantified using colony-forming unit assay, and SARS-CoV-2 photodamage was assessed by RT-PCR.

The results suggest that KI addition to MB leads to KI concentration-dependent potentiation (up to ~ 5 log10) of photoinactivation in bacteria and fungi. aPDT in the presence of 25 or 50 mM KI shows the following photoinactivation trend; Gm + ve bacteria  > Gm − ve bacteria > fungi  > virus. aPDT in the presence of 100 mM KI, using 3- or 5-min red light exposure, results in complete eradication of bacteria or fungi, respectively. For SARS-CoV-2, aPDT using MB-KI leads to a ~ 6.5 increase in cycle threshold value.

The results demonstrate the photoinactivation effectiveness of the device and MB-KI formulation, which may be helpful in designing of an optimized protocol for future intranasal photoinactivation studies in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rawls M, Ellis AK (2019) The microbiome of the nose. Ann Allergy Asthma Immunol 122:17–24. https://doi.org/10.1016/j.anai.2018.05.009

    Article  PubMed  Google Scholar 

  2. Dimitri-Pinheiro S, Soares R, Barata P (2020) The microbiome of the nose—friend or foe? Allergy Rhinol 11:215265672091160. https://doi.org/10.1177/2152656720911605

    Article  Google Scholar 

  3. Mahdavinia M, Keshavarzian A, Tobin MC et al (2016) A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy 46:21–41. https://doi.org/10.1111/cea.12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Köck R, Werner P, Friedrich AW et al (2016) Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect 9:24–34. https://doi.org/10.1016/j.nmni.2015.11.004

    Article  PubMed  Google Scholar 

  5. Ning J, Wang J, Zhang S, Sha X (2020) Nasal colonization of Staphylococcus aureus and the risk of surgical site infection after spine surgery: a meta-analysis. Spine J 20:448–456. https://doi.org/10.1016/j.spinee.2019.10.009

    Article  PubMed  Google Scholar 

  6. Tang J, Hui J, Ma J, Mingquan C (2020) Nasal decolonization of Staphylococcus aureus and the risk of surgical site infection after surgery: a meta-analysis. Ann Clin Microbiol Antimicrob 19:33. https://doi.org/10.1186/s12941-020-00376-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouyer B, Arvieu R, Gerlinger M-P et al (2020) Individual decontamination measures reduce by two the incidence of surgical site infections in spinal surgery. Orthop Traumatol Surg Res 106:1175–1181. https://doi.org/10.1016/j.otsr.2020.01.013

    Article  PubMed  Google Scholar 

  8. Lefebvre J, Buffet-Bataillon S, Henaux PL et al (2017) Staphylococcus aureus screening and decolonization reduces the risk of surgical site infections in patients undergoing deep brain stimulation surgery. J Hosp Infect 95:144–147. https://doi.org/10.1016/j.jhin.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  9. Scharf M, Holzapfel DE, Ehrnsperger M, Grifka J (2023) Preoperative decolonization appears to reduce the risk of infection in high-risk groups undergoing total hip arthroplasty. Antibiotics 12:877. https://doi.org/10.3390/antibiotics12050877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller LG, Singh R, Eells SJ et al (2023) Chlorhexidine and mupirocin for clearance of methicillin-resistant staphylococcus aureus colonization after hospital discharge: a secondary analysis of the changing lives by eradicating antibiotic resistance trial. Clin Infect Dis 76:e1208–e1216. https://doi.org/10.1093/cid/ciac402

    Article  PubMed  Google Scholar 

  11. Septimus EJ (2019) Nasal decolonization: what antimicrobials are most effective prior to surgery? Am J Infect Control 47:A53–A57. https://doi.org/10.1016/j.ajic.2019.02.028

    Article  Google Scholar 

  12. Hetem DJ, Bonten MJM (2013) Clinical relevance of mupirocin resistance in Staphylococcus aureus. J Hosp Infect 85:249–256. https://doi.org/10.1016/j.jhin.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  13. Saleem HGM, Seers CA, Sabri AN, Reynolds EC (2016) Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol 16:214. https://doi.org/10.1186/s12866-016-0833-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wand ME, Bock LJ, Bonney LC, Sutton JM (2017) Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 61:. https://doi.org/10.1128/AAC.01162-16

  15. Dadashi M, Hajikhani B, Darban-Sarokhalil D et al (2020) Mupirocin resistance in Staphylococcus aureus: a systematic review and meta-analysis. J Glob Antimicrob Resist 20:238–247. https://doi.org/10.1016/j.jgar.2019.07.032

    Article  PubMed  Google Scholar 

  16. Wainwright M, Maisch T, Nonell S et al (2017) Photoantimicrobials—are we afraid of the light? Lancet Infect Dis 17:e49–e55. https://doi.org/10.1016/S1473-3099(16)30268-7

    Article  PubMed  Google Scholar 

  17. Maliszewska I, Zdubek A (2023) On the photo-eradication of methicillin-resistant Staphylococcus aureus biofilm using methylene blue. Int J Mol Sci 24:791. https://doi.org/10.3390/ijms24010791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Santi MESO, Prates RA, França CM et al (2018) Antimicrobial photodynamic therapy as a new approach for the treatment of vulvovaginal candidiasis: preliminary results. Lasers Med Sci 33:1925–1931. https://doi.org/10.1007/s10103-018-2557-y

    Article  PubMed  Google Scholar 

  19. da Mota ACC, Gonçalves MLL, Horliana ACRT et al (2022) Effect of antimicrobial photodynamic therapy with red led and methylene blue on the reduction of halitosis: controlled microbiological clinical trial. Lasers Med Sci 37:877–886. https://doi.org/10.1007/s10103-021-03325-x

    Article  PubMed  Google Scholar 

  20. Fernandez-Montero A, Zuaznabar J, Pina-Sanchez M, et al (2023) Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-Cell responses. Front Cell Infect Microbiol 13:. https://doi.org/10.3389/fcimb.2023.1110467

  21. Sabino CP, Ball AR, Baptista MS et al (2020) Light-based technologies for management of COVID-19 pandemic crisis. J Photochem Photobiol B 212:111999. https://doi.org/10.1016/j.jphotobiol.2020.111999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pires L, Wilson BC, Bremner R et al (2022) Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Sci Rep 12:14438. https://doi.org/10.1038/s41598-022-18513-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alves E, Faustino MA, Neves MG, Cunha A, Tome J, Almeida A (2014) An insight on bacterial cellular targets of photodynamic inactivation. Future Med Chem 6:141–164. https://doi.org/10.4155/fmc.13.211. (PMID: 24467241)

    Article  CAS  PubMed  Google Scholar 

  24. Atta D, Elarif A, Bahrawy Al (2023) Reactive oxygen species creation by laser-irradiated indocyanine green as photodynamic therapy modality: an in vitro study Lasers. Med Sci 38:213. https://doi.org/10.1007/s10103-023-03876-1

    Article  Google Scholar 

  25. Boltes Cecatto R, Siqueira de Magalhães L, Rodrigues Fernanda Setúbal Destro, M, Pavani C, Lino-dos-Santos-Franco A, Teixeira Gomes M and Fátima Teixeira Silva D (2020) Methylene blue mediated antimicrobial photodynamic therapy in clinical human studies: the state of the art Photodiagnosis. Photodyn Ther 31:101828

    Article  CAS  Google Scholar 

  26. Dabholkar N, Gorantla S, Dubey SK et al (2021) Repurposing methylene blue in the management of COVID-19: mechanistic aspects and clinical investigations. Biomed Pharmacother 142:112023. https://doi.org/10.1016/j.biopha.2021.112023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tardivo JP, Adami F, Correa JA, Pinhal MAS, Baptista MS (2014) A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients. Photodiagnosis Photodyn Ther 11:342–350

    Article  PubMed  Google Scholar 

  28. Hempstead J, Jones DP, Ziouche A et al (2015) Low-cost photodynamic therapy devices for global health settings: characterization of battery-powered LED performance and smartphone imaging in 3D tumor models. Sci Rep 5:10093. https://doi.org/10.1038/srep10093

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maliszewska I, Lisiak B, Popko K, Matczyszyn K (2017) Enhancement of the efficacy of photodynamic inactivation of Candida albicans with the use of biogenic gold nanoparticles. Photochem Photobiol 93:1081–1090. https://doi.org/10.1111/php.12733

    Article  CAS  PubMed  Google Scholar 

  30. Bryce E, Wong T, Forrester L et al (2014) Nasal photodisinfection and chlorhexidine wipes decrease surgical site infections: a historical control study and propensity analysis. J Hosp Infect 88:89–95. https://doi.org/10.1016/j.jhin.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  31. Vieira C, Gomes ATPC, Mesquita MQ, et al (2018) An insight into the potentiation effect of potassium iodide on aPDT efficacy. Front Microbiol 9:. https://doi.org/10.3389/fmicb.2018.02665

  32. Mrig S, Sardana K, Arora P et al (2022) Adjunctive use of saturated solution of potassium iodide (SSKI) with liposomal amphotericin B (L-AMB) in mucormycosis achieves favorable response, shortened dose and duration of amphotericin: a retrospective study from a COVID-19 tertiary care center. Am J Otolaryngol 43:103465. https://doi.org/10.1016/j.amjoto.2022.103465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costa RO, Macedo PM, Carvalhal A, Bernardes-Engemann AR (2013) Use of potassium iodide in dermatology: updates on an old drug. An Bras Dermato 88(3):396–402. https://doi.org/10.1590/abd1806-4841.20132377

    Article  Google Scholar 

  34. Sehrawat M, Dixit N, Sardana K, Malhotra P (2018) Exploring the combination of SSKI and topical heparin in a case of erythema nodosum migrans. Dermatol Ther 31:e12610. https://doi.org/10.1111/dth.12610

    Article  PubMed  Google Scholar 

  35. Vieira C, Santos A, Mesquita MQ, et al (2021) Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. In: Porphyrin science by women. World Scientific, pp 290–301 https://doi.org/10.1142/9789811223556_0022

  36. Li Y, Du J, Huang S et al (2022) Antimicrobial photodynamic effect of cross-kingdom microorganisms with toluidine blue O and potassium iodide. Int J Mol Sci 23:11373. https://doi.org/10.3390/ijms231911373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu F, Yan L, Wang N et al (2020) Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis 71:793–798. https://doi.org/10.1093/cid/ciaa345

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Lin C-Y, Moore C et al (2018) Switchable photoacoustic intensity of methylene blue via sodium dodecyl sulfate micellization. Langmuir 34:359–365. https://doi.org/10.1021/acs.langmuir.7b03718

    Article  CAS  PubMed  Google Scholar 

  39. Conference I (2022) Photocatalytic activity of chitosan/Z gel blind for the photodegradation of methyl orange, for west water treatment. Egypt J Chem 0:0–0. https://doi.org/10.21608/ejchem.2022.156162.6759

  40. López-Fernández AM, Moisescu EE, de Llanos R, Galindo F (2022) Development of a polymeric film entrapping rose bengal and iodide anion for the light-induced generation and release of bactericidal hydrogen peroxide. Int J Mol Sci 23:10162. https://doi.org/10.3390/ijms231710162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Septimus EJ, Schweizer ML (2016) Decolonization in prevention of health care-associated infections. Clin Microbiol Rev 29:201–222. https://doi.org/10.1128/CMR.00049-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng VCC, Li IWS, Wu AKL et al (2008) Effect of antibiotics on the bacterial load of meticillin-resistant Staphylococcus aureus colonisation in anterior nares. J Hosp Infect 70:27–34. https://doi.org/10.1016/j.jhin.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  43. Al Bayat S, Mundodan J, Hasnain S et al (2021) Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? J Infect Public Health 14:1201–1205. https://doi.org/10.1016/j.jiph.2021.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hepburn J, Williams-Lockhart S, Bensadoun RJ, Hanna R (2022) A novel approach of combining methylene blue photodynamic inactivation, photobiomodulation and oral ingested methylene blue in COVID-19 management: a pilot clinical study with 12-month follow-up. Antioxidants 11:2211. https://doi.org/10.3390/antiox11112211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li R, Yuan L, Jia W et al (2021) Effects of rose bengal- and methylene blue-mediated potassium iodide-potentiated photodynamic therapy on Enterococcus faecalis: a comparative study. Lasers Surg Med 53:400–410. https://doi.org/10.1002/lsm.23299

    Article  PubMed  Google Scholar 

  46. Yuan L, Lyu P, Huang Y-Y et al (2020) Potassium iodide enhances the photobactericidal effect of methylene blue on Enterococcus faecalis as planktonic cells and as biofilm infection in teeth. J Photochem Photobiol B 203:111730. https://doi.org/10.1016/j.jphotobiol.2019.111730

    Article  CAS  PubMed  Google Scholar 

  47. Nuñez SC, Yoshimura TM, Ribeiro MS et al (2015) Urea enhances the photodynamic efficiency of methylene blue. J Photochem Photobiol B 150:3137. https://doi.org/10.1016/j.jphotobiol.2015.03.018

    Article  CAS  Google Scholar 

  48. Bilal MY, Dambaeva S, Kwak-Kim J, Gilman-Sachs A, Beaman KD (2017) A role for iodide and thyroglobulin in modulating the function of human immune cells. Front Immunol 2017(8):1573. https://doi.org/10.3389/fimmu.2017.01573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Shankar Vinayak Nakhe, Director, Raja Ramanna Centre For Advanced Technology, Indore, for his valuable suggestions regarding the design and development of the LED-based device. We also thank Dr. Ranjana Haldar, Sodani Sampuna Diagnostics, Indore, for her help during the investigations on clinical bacterial isolates.

Funding

This study is funded by the Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SC: conceptualization, methodology, investigation, formal analysis, validation, original draft.

DM: conceptualization, methodology, investigation, formal analysis, validation, original draft.

AC: methodology, investigation, formal analysis, validation.

HK: resources, investigation, validation.

DT: methodology, resources, investigation.

SC: methodology, resources, investigation.

SS: methodology, resources, investigation.

KS: conceptualization, methodology, investigation, formal analysis, data curation, review and editing.

SKM: conceptualization, resources, review and editing, project administration, supervision.

Corresponding author

Correspondence to Khageswar Sahu.

Ethics declarations

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Mohanty, D., Chowdhury, A. et al. In vitro photoinactivation effectiveness of a portable LED device aimed for intranasal photodisinfection and a photosensitizer formulation comprising methylene blue and potassium iodide against bacterial, fungal, and viral respiratory pathogens. Lasers Med Sci 39, 60 (2024). https://doi.org/10.1007/s10103-024-03996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-03996-2

Keywords

Navigation