Skip to main content
Log in

Transcranial photobiomodulation therapy associated with cardiorespiratory rehabilitation in spastic subjects

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of cardiorespiratory rehabilitation (CR) and transcranial photobiomodulation (tPBM) on exercise tolerance (ET), heart rate variability (HRV), and peripheral muscle activity in individuals with spasticity. Fifteen participants with spasticity were randomly assigned to two groups: the tPBM group (tPBMG) consisted of eight volunteers who underwent tPBM (on mode) and CR, while the control group (CG) consisted of seven volunteers who underwent simulated tPBM (off mode) and CR. The CR program included 12 weeks of treatment, twice a week for one hour, involving aerobic exercises and lower limb strengthening. For tPBM, a cluster with three lasers (λ = 680 nm, 808 nm), with a power of 100 mW/laser and energy of 36 J, applied to the F7, F8, and Fpz points. The following parameters were evaluated after 8 and 12 weeks: ET, HRV, and surface electromyography (EMG) of the rectus femoris muscle during orthostasis (ORT), isometric squatting (ISOM), and isotonic squatting (ISOT). Both groups showed a 40% increase in ET for the CG and a 30% increase for the tPBMG. The CG had more pronounced parasympathetic modulation alterations during post-exercise effort and recovery compared to the tPBMG. The EMG results showed that the tPBMG exhibited progressive improvement in muscle activity during ISOM and ISOT, as well as a decrease in the interlimb difference. In conclusion, both CR and tPBMG demonstrated improvements in ET. However, tPBMG specifically showed promising effects on HRV modulation and peripheral muscle electrical activity, providing additional benefits compared to CR alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Synnot A, Chau M, Pitt V et al (2017) Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database Syst Rev 11(11):CD008929. https://doi.org/10.1002/14651858.CD008929.pub2

    Article  PubMed  Google Scholar 

  2. Song JZ, Catizzone M, Arbour-Nicitopoulos KP et al (2020) Physical performance outcome measures used in exercise interventions for adults with childhood-onset disabilities: A scoping review. NeuroRehabilitation 47:359–380. https://doi.org/10.3233/NRE-203250

    Article  PubMed  Google Scholar 

  3. Sáinz-Pelayo MP, Albu S, Murillo N et al (2020) Spasticity in neurological pathologies. An update on the pathophysiological mechanisms, advances in diagnosis and treatment. Rev Neurol 70(12):453–460. https://doi.org/10.33588/rn.7012.2019474

    Article  PubMed  Google Scholar 

  4. das Neves MF, dos Reis MC, de Andrade EA et al (2016) Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers Med Sci 31(7):1293–300. https://doi.org/10.1007/s10103-016-1968-x

    Article  PubMed  Google Scholar 

  5. Handsfield GG, Williams S, Khuu S et al (2022) Muscle architecture, growth, and biological remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 23:233. https://doi.org/10.1186/s12891-022-05110-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Venkat P, Seyfried D et al (2017) Brain-Heart Interaction: Cardiac Complications After Stroke. Circ Res 121(4):451–468. https://doi.org/10.1161/CIRCRESAHA.117.31117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamel RN, Smoliga JM (2019) Physical activity intolerance and cardiorespiratory dysfunction in patients with moderate-to-severe traumatic brain injury. Sports Med 49:1183–1198. https://doi.org/10.1007/s40279-019-01122-9

    Article  PubMed  Google Scholar 

  8. Winstein CJ, Stein J, Arena R et al (2016) Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 47(6):e98–e169. https://doi.org/10.1161/STR.0000000000000098

    Article  PubMed  Google Scholar 

  9. Herdy AH, López-Jiménez F, Terzic CP et al (2014) South American guidelines for cardiovascular disease prevention and rehabilitation. Arquivos Brasileiros de Cardiologia 103(2):1–31. https://doi.org/10.5935/abc.2014S003

    Article  CAS  PubMed  Google Scholar 

  10. Chan AS, Lee TL, Yeung MK et al (2019) Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry 34(2):369–377. https://doi.org/10.1002/gps.5039

    Article  PubMed  Google Scholar 

  11. Wang X, Wanniarachchi H, Wu A et al (2021) Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci Rep 11:18917. https://doi.org/10.1038/s41598-021-97987-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delmas S, Casamento-Moran A, Park SH et al (2018) Motor planning perturbation: muscle activation and reaction time. J Neurophysiol 120(4):2059–2065. https://doi.org/10.1152/jn.00323.2018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hennessy M, Hamblin MR (2017) Photobiomodulation and the brain: a new paradigm. J Opt 19(1):013003. https://doi.org/10.1088/2040-8986/19/1/013003

    Article  CAS  PubMed  Google Scholar 

  14. Lent R (2022) One Hundred Billion Neurons? - Fundamental Neuroscience Concepts. Atheneu, São Paulo

    Google Scholar 

  15. American Thoracic Society (2002) ATS committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 166(1):111–7. https://doi.org/10.1164/ajrccm.166.1.at1102

    Article  Google Scholar 

  16. Enright PL, Sherrill DL (1998) Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med 158(5 Pt 1):1384–7. https://doi.org/10.1164/ajrccm.158.5.9710086

    Article  CAS  PubMed  Google Scholar 

  17. SENIAM (2022) Recommendations for sensor locations in hip or upper leg muscles. Publishing Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM) project. http://www.seniam.org/. Accessed 15 June 2022

  18. Del Vecchio A, Casolo A, Negro F et al (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887. https://doi.org/10.1113/JP277250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pinto AP, Guimarães CL, Souza GAS et al (2019) Sensory-motor and cardiorespiratory sensory rehabilitation associated with transcranial photobiomodulation in patients with central nervous system injury: Trial protocol for a single-center, randomized, double-blind, and controlled clinical trial. Medicine 98(25):e15851. https://doi.org/10.1097/MD.0000000000015851

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karvonen J, Vuorimaa T (1988) Heart rate and exercise intensity during sports activities. Practical application. Sports Med 5(5):303–311. https://doi.org/10.2165/00007256-198805050-00002

    Article  CAS  PubMed  Google Scholar 

  21. Chaitman BR (2003) Abnormal heart rate responses to exercise predict increased long-term mortality regardless of coronary disease extent: the question is why? J Am Coll Cardiol 42(5):839–841. https://doi.org/10.1016/s0735-1097(03)00834-9

    Article  PubMed  Google Scholar 

  22. Raimundo RD, de Abreu LC, Adami F et al (2013) Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise. Transl Stroke Res 4(5):488–499. https://doi.org/10.1007/s12975-013-0263-4

    Article  PubMed  Google Scholar 

  23. Fulk GD, He Y (2018) Minimal clinically important difference of the 6-minute walk test in people with stroke. J Neurol Phys Ther 42(4):235–240. https://doi.org/10.1097/NPT.0000000000000236

    Article  PubMed  Google Scholar 

  24. Puhan MA, Chandra D, Mosenifar Z et al (2011) The minimal important difference of exercise tests in severe COPD. Eur Respir J 37(4):784–790. https://doi.org/10.1183/09031936.00063810

    Article  CAS  PubMed  Google Scholar 

  25. Mathai SC, Puhan MA, Lam D et al (2012) The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 186(5):428–433. https://doi.org/10.1164/rccm.201203-0480OC

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koichubekov BK, Sorokina MA, Laryushina YM et al (2018) Nonlinear analyses of heart rate variability in hypertension. Ann Cardiol Angeiol 67(3):174–179. https://doi.org/10.1016/j.ancard.2018.04.014

    Article  CAS  Google Scholar 

  27. Nunan D, Sandercock GR, Brodie DA (2010) A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol 33(11):1407–1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x

    Article  PubMed  Google Scholar 

  28. Gąsior JS, Zamunér AR, Silva LEV et al (2020) Heart Rate Variability in Children and Adolescents with Cerebral Palsy—A Systematic Literature Review. J Clin Med 9(4):1141. https://doi.org/10.3390/jcm9041141

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fisher JP, Young CN, Fadel PJ (2015) Autonomic adjustments to exercise in humans. Compr Physiol 5(2):475–512. https://doi.org/10.1002/cphy.c140022

    Article  PubMed  Google Scholar 

  30. Lundell RV, Tuominen L, Ojanen T et al (2021) Diving responses in experienced rebreather divers: Short-term heart rate variability in cold water diving. Front Physiol 12:649319. https://doi.org/10.3389/fphys.2021.649319

    Article  PubMed  PubMed Central  Google Scholar 

  31. KUBIOS (2022) HRV in evaluating autonomic nervous system function. Kubios Publishing. https://www.kubios.com/hrv-ans-function. Accessed 21 May 2022

  32. Nizamutdinov D, Ezeudu C, Wu E et al (2022) Transcranial near-infrared light in treatment of neurodegenerative diseases. Front Pharmacol 13:965788. https://doi.org/10.3389/fphar.2022.965788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang WH, Lin SP, Chang ST (2017) Case report: Rapid improvement of crossed cerebellar diaschisis after intravascular laser irradiation of blood in a case of stroke. Medicine 96(2):e5646. https://doi.org/10.1097/MD.0000000000005646

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tai CT, Cheng YY, Chang ST (2020) Top-down redistribution of brain circulation from thalamus to cerebellum in Response to intravenous laser irradiation of blood in case of chronic cerebellar stroke: Pilot observation from brain images. J Phys Med Rehabil Disabil 6:054. https://doi.org/10.24966/PMRD-8670/100054

    Article  Google Scholar 

  35. Lin YP, Ku CH, Chang CC, Chang ST (2023) Effects of intravascular photobiomodulation on cognitive impairment and crossed cerebellar diaschisis in patients with traumatic brain injury: a longitudinal study. Lasers Med Sci 38(1):108. https://doi.org/10.1007/s10103-023-03764-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferreira Junior A et al (2018) Cardiac autonomic responses and number of repetitions maximum after LED irradiation in the ipsilateral and contralateral lower limb. Lasers Med Sci 33(2):353–359. https://doi.org/10.1007/s10103-017-2391-7

    Article  PubMed  Google Scholar 

  37. Paolillo FR, Arena R, Dutra DB et al (2014) Low-level laser therapy associated with high intensity resistance training on cardiac autonomic control of heart rate and skeletal muscle remodeling in wistar rats. Lasers Surg Med 46(10):796–803. https://doi.org/10.1002/lsm.22298

    Article  PubMed  Google Scholar 

  38. Galen SS, Malek MH (2014) A Single Electromyographic Testing Point Is Valid to Monitor Neuromuscular Fatigue During Continuous Exercise. J Strength Cond Res 28(10):2754–2759. https://doi.org/10.1519/JSC.0000000000000616

    Article  PubMed  Google Scholar 

  39. Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39(5):1062–1068. https://doi.org/10.1152/jn.1976.39.5.1062

    Article  CAS  PubMed  Google Scholar 

  40. Sung PS, O’Sullivan E, Park MS (2021) The reaction times and symmetry indices in the bilateral trunk and limb muscles in control subjects and subjects with low back pain that persisted two months or longer. Eur Spine J 30(10):2975–2982. https://doi.org/10.1007/s00586-021-06797-1

    Article  PubMed  Google Scholar 

  41. Lin SI, Lo CC, Lin PY et al (2012) Biomechanical assessments of the effect of visual feedback on cycling for patients with stroke. J Electromyogr Kinesiol 22(4):582–588. https://doi.org/10.1016/j.jelekin.2012.03.009

    Article  PubMed  Google Scholar 

  42. das Neves MF, Aleixo DC, Mendes IS et al (2020) Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): a double-blinded placebo-controlled clinical trial. Lasers Med Sci 35(7):1459–1467. https://doi.org/10.1007/s10103-019-02920-3

    Article  PubMed  Google Scholar 

  43. dos Reis MC, de Andrade EA, Borges AC et al (2015) Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. Lasers Med Sci 30(3):1089–96. https://doi.org/10.1007/s10103-014-1702-5

    Article  PubMed  Google Scholar 

  44. Santos MTBR, Nascimento KS, Carazzato S et al (2017) Efficacy of photobiomodulation therapy on masseter thickness and oral health-related quality of life in children with spastic cerebral palsy. Lasers Med Sci 32(6):1279–1288. https://doi.org/10.1007/s10103-017-2236-4

    Article  PubMed  Google Scholar 

  45. Lorenz LS, Charrette AL, O’Neil-Pirozzi TM et al (2018) Healthy body, healthy mind: A mixed methods study of outcomes, barriers and supports for exercise by people who have chronic moderate-to-severe acquired brain injury. Disabil Health J 11(1):70–78. https://doi.org/10.1016/j.dhjo.2017.08.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We are especially grateful for the doctoral scholarship granted to the author Ana Paula Pinto.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Pinto.

Ethics declarations

Ethical approval

This study was approved by the Research Ethics Committee of the Paraiba Valley University, Brazil (CAAE: 94858718,3,0000,5503), approval judgment 2,879,764. Afterwards, it was registered on the ClinicalTrials.gov platform, ID—NCT03751306.

Informed consent

We declare that all authors agree with the work and that the content has not been published or is in the approval process in other journals.

Conflict of interest

We declare that there is no conflict of interest between us authors (personal, financial or otherwise).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, A.P., Lemos, S.L., de Almeida Fagundes, A. et al. Transcranial photobiomodulation therapy associated with cardiorespiratory rehabilitation in spastic subjects. Lasers Med Sci 38, 249 (2023). https://doi.org/10.1007/s10103-023-03922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03922-y

Keywords

Navigation