Skip to main content
Log in

The effects of low-level laser therapy on polycystic ovarian syndrome in rats: three different dosages

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The main objective of this in vivo study was to investigate the effect of different low-level laser therapy (LLLT) doses on polycystic ovary syndrome (PCOS). In the present experimental study, a single dosage of estradiol valerate (EV) was administered to induce PCOS in female rats. After administration of the EV for induction of PCOS, rats were divided into 5 groups (n = 8/group): C group (animals that were not exposed to any form of procedure), PC group (no treatment following EV induction), L1 group (1 J/cm2 LLLT treatment following EV induction), L2 group (2 J/cm2 LLLT treatment following EV induction), L3 group (6 J/cm2 LLLT treatment following EV induction). The results indicated that no significant difference was found in the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone (P4) between the C and L2 groups (p < 0.05). Although the serum levels of testosterone (T) were significantly higher in the C group compared with other groups (p < 0.05), the L2 group was determined to be the closest to the C group. Additionally, the LH, FSH, and T receptor level of the L2 group was closest to the C group. In conclusion, a 2 J/cm2 dosage of LLLT (L2 group) can be considered the most potentially effective treatment of PCOS in the rat. However, more studies are needed to determine the optimal dose of LLLT for the treatment of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hernandez-Medrano JH, Campbell BK, Webb R (2012) Nutritional influences on folli- culogenesis. Reprod Domest Anim 47:274–282. https://doi.org/10.1111/j.1439-0531.2012.02086.x

    Article  PubMed  Google Scholar 

  2. Chaudhari N, Dawalbhakta M, Nampoothiri L (2018) GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol 16:1–13. https://doi.org/10.1186/s12958-018-0354-x

    Article  CAS  Google Scholar 

  3. Pişkinpaşa S, Yıldız BO (2005) Polikistik over sendromu. Hacettepe Tıp Dergisi 36:168–174

    Google Scholar 

  4. Azziz R (2016) PCOS in 2015: new insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol 12(3):74–75. https://doi.org/10.1038/nrendo.2015.230

    Article  CAS  PubMed  Google Scholar 

  5. Noroozzadeh M, Behboudi-Gandevani S, Zadeh-Vakili A, Tehrani FR (2017) Hormone-induced rat model of polycystic ovary syndrome: a systematic review. Life sci 191:259–272. https://doi.org/10.1016/j.lfs.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  6. Singh KB (2005) Persistent estrus rat models of polycystic ovary disease: an update. Fertil steril 84:1228–1234. https://doi.org/10.1016/j.fertnstert.2005.06.013

    Article  PubMed  Google Scholar 

  7. Tsilchorozidou T, Overton C, Conway GS (2004) The pathophysiology of polycystic ovary syndrome. Clin Endocrinol (Oxf) 60:1–17. https://doi.org/10.1046/j.1365-2265.2003.01842.x

    Article  CAS  PubMed  Google Scholar 

  8. Park CH, Chun S (2016) Association between serum gonadotropin level and insulin resistance- related parameters in Korean women with polycystic ovary syndrome. Obstet Gynecol Sci 59(6):498–505. https://doi.org/10.5468/ogs.2016.59.6.498

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duleba AJ (2012) Medical management of metabolic dysfunction in PCOS. Steroids 77(4):306–311. https://doi.org/10.1016/j.steroids.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  10. Sirmans SM, Pate KA (2014) Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 6:1–13. https://doi.org/10.2147/CLEP.S37559

    Article  Google Scholar 

  11. Kabiri N, Mohammad R, Seyed R (2014) Beneficial effects of pioglitazone and metformin in murinr model of polycystic ovaries via improvement of chemerin gene up-regulation. J Pharm Sci 22:39. https://doi.org/10.1186/2008-2231-22-39

    Article  CAS  Google Scholar 

  12. Tannys D, Ottawa A (2010) Vancouver. Déclenchement de l’ovulation en présence du SOPK. Directive clinique de la SOGC 242:503–511

    Google Scholar 

  13. Stang M, Wysowski DK, Butler-Jones D (1999) Incidence of lactic acidosis in metformin users. Diabetes Care 22:925–927

    Article  CAS  PubMed  Google Scholar 

  14. Gruber DM, Huber JC (1999) Mortality associated with oral contraceptive use: 25-year follow-up of a cohort of 46,000 women from Royal College of General Practitioners’s Oral Contraception Study. Analysis and comment on the BMJ study of the long-term risk of using oral contraceptives. Gynakol Geburtshilfliche Rundsch 39:231–232

    CAS  PubMed  Google Scholar 

  15. Thomson RL, Spedding S, Buckley JD (2012) Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol 77:343–350. https://doi.org/10.1111/j.1365-2265.2012.04434.x

    Article  CAS  Google Scholar 

  16. Mvondo MA, Mzemdem Tsoplfack FI, Awounfack CF, Njamen D (2020) The leaf aqueous extract of Myrianthus arboreus P. Beauv. (Cecropiaceae) improved letrozole-induced polycystic ovarian syndrome associated conditions and infertility in female Wistar rats. BMC Complement Med Ther 20:1–13. https://doi.org/10.1186/s12906-020-03070-8

    Article  CAS  Google Scholar 

  17. Ruh AC, Frigo L, Cavalcanti M, Svidnicki P, Vicari VN, Lopes-Martins RAB, Leal Junior ECP, De Isla N, Diomede F, Trubiani O, Favero GM (2018) Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Laser. Med Sci 33:165e171

    Google Scholar 

  18. Hamblin MR, Agrawal T, de Sousa M (2016) Handbook of low-level laser therapy. CRC Press

    Book  Google Scholar 

  19. Oubiña G, Pascuali N, Scotti L, Di Pietro M, La Spina FA, Buffone MG, Parborell F, Higuera J, Abramovich D (2018) Low level laser therapy (LLLT) modulates ovarian function in mature female mice. Prog Biophys Mol Biol 145:10–18. https://doi.org/10.1016/j.pbiomolbio.2018.11.010

    Article  PubMed  Google Scholar 

  20. Okur S, Okumuş Z (2023) Effects of low-level laser therapy and therapeutic ultrasound on Freund’s complete adjuvant-induced knee arthritis model in rats. Arch Rheumatol 38(1):32

    Article  PubMed  Google Scholar 

  21. Matic M, Lazetic B, Poljacki M, Duran V, Ivkov-Simic M (2003) Low level laser irradiation and its effect on repair processes in the skin. Med. Pregl 56:137–141. https://doi.org/10.2298/mpns0304137m

    Article  PubMed  Google Scholar 

  22. Huang YY, Chenet AC, Carroll JD, Hamblin RM (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Mechanisms for low-light therapy 6140:614001

    Article  Google Scholar 

  24. Tessaro I, Modina SC, Franciosi F, Sivelli G, Terzaghi L, Lodde V, Luciano AM (2015) Effect of oral administration of low-dose follicle stimulating hormone on hyperandrogenized mice as a model of polycystic ovary syndrome. J Ovarian Res 8:64. https://doi.org/10.1186/s13048-015-0192-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alves ED, Bonfá ALO, Pigatto GR, Anselmo-Franci JA, Achcar JA, Parizotto NA, Montrezor LH (2019) Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats. J Photochem Photobiol B: Biol 194:6–13. https://doi.org/10.1016/j.jphotobiol.2019.03.006

    Article  CAS  Google Scholar 

  26. Szukiewicz D, Uilenbroek JT (1998) Polycystic ovary syndrome--searching for an animal model. J Med 29(5-6):259–275

    CAS  PubMed  Google Scholar 

  27. Montrezor LH, Carvalho D, Dias MB, Anselmo-Franci JA, Bícego KC, Gargaglioni LH (2015) Hypoxic and hypercapnic ventilatory responses in rats with polycystic ovaries. Respir Physiol Neurobiol 217:17–24. https://doi.org/10.1016/j.resp.2015.06.009

    Article  PubMed  Google Scholar 

  28. Pereira VM, Honorato-Sampaio K, Martins AS, Reis FM, Reis AM (2014) Downregulation of natriuretic peptide system and increased steroidogenesis in rat polycystic ovary. Peptides 60:80–85. https://doi.org/10.1016/j.peptides.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  29. Uchiyama F, Jikyo T, Takeda R, Ogata M (2014) Lepidium meyenii (Maca) enhances the serum levels of luteinising hormone in female rats. J Ethnopharmacol 151(2):897–902

    Article  PubMed  Google Scholar 

  30. Hirano S (2012) Western blot analysis. Nanotoxicity: methods and protocols, pp 87–97

    Google Scholar 

  31. Brawer JR, Naftolin F, Martin J, Sonnenschein C (1978) Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 103(2):501–512. https://doi.org/10.1210/endo-103-2-501

    Article  CAS  PubMed  Google Scholar 

  32. Brawer JR, Munoz M, Farookhi R (1986) Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod 35(3):647–655. https://doi.org/10.1095/biolreprod35.3.647

    Article  CAS  PubMed  Google Scholar 

  33. Carriere PD, Brawer JR, Farookhi R (1988) Pituitary gonadotropin-releasing hormone receptor content in rats with polycystic ovaries. Biol Reprod 38(3):562–567. https://doi.org/10.1095/biolreprod38.3.562

    Article  CAS  PubMed  Google Scholar 

  34. Simard M, Brawer JR, Farookhi R (1987) An intractable, ovary-independent impairment in hypothalamo-pituitary function in the estradiol-valerate-induced polycystic ovarian condition in the rat. Biol Reprod 36(5):1229–1237. https://doi.org/10.1095/biolreprod36.5.1229

    Article  CAS  PubMed  Google Scholar 

  35. Stener-Victorin E, Lundeberg T, Waldenstrom U, Manni L, Aloe L, Gunnarsson S, Janson PO (2000) Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biol Reprod 63:1497–1503. https://doi.org/10.1095/biolreprod63.5.1497

    Article  CAS  PubMed  Google Scholar 

  36. Lara HE, Ferruz JL, Luza S, Bustamante DA, Borges Y, Ojeda SR (1993) Activation of ovarian sympathetic nerves in polycystic ovary syndrome. Endocrinology 133:2690–2695. https://doi.org/10.1210/en.133.6.2690

    Article  CAS  PubMed  Google Scholar 

  37. Walters KA, Allan CM, Handelsman DJ (2012) Rodent models for human polycystic ovary syndrome. Biol reprod 86(5):149–141. https://doi.org/10.1095/biolreprod.111.097808

    Article  CAS  PubMed  Google Scholar 

  38. Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M (2014) Effects of 660-and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci 29:1593–1598. https://doi.org/10.1007/s10103-014-1552-1

    Article  CAS  PubMed  Google Scholar 

  39. Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EÂL, Villaverde AGJB (2013) Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28:651–656. https://doi.org/10.1007/s10103-012-1125-0

    Article  PubMed  Google Scholar 

  40. Dumitrescu R, Mehedintu C, Briceag I, Purcarea VL, Hudita D (2015) The polycystic ovary syndrome: an update on metabolic and hormonal mechanisms. J Med Life Sci 8(2):142

    CAS  Google Scholar 

  41. Karimi Jashni H, Kargar Jahromi H, Bagheri Z (2016) The effect of palm pollen extract on polycystic ovary syndrome (POS) in rats. Int J Med Res Health Sci 5(5):317–321

    Google Scholar 

  42. Speroff L, Fritz MA (2005) Clinical gynecologic endocrinology and infertility. In: Philadelphia PA (ed) Anovulation and the polycystic ovary, 7th edn. Williams &Wilkins Lippincott

    Google Scholar 

  43. Esmaeilinezhad Z, Babajafari S, Sohrabi Z, Eskandari MH, Amooee S, Barati-Boldaji R (2019) Effect of synbiotic pomegranate juice on glycemic, sex hormone profile and anthropometric indices in PCOS: a randomized, triple blind, controlled trial. Nutr Metab Cardiovasc Dis 29(2):201–208. https://doi.org/10.1016/j.numecd.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Di Pietro M, Pascuali N, Parborell F, Abramovich D (2018) Ovarian angiogenesis in polycystic ovary syndrome. Reproduction 155(5):199–209. https://doi.org/10.1530/REP-17-0597

    Article  Google Scholar 

  45. Abramovich D, Irusta G, Bas D, Cataldi NI, Parborell F, Tesone M (2012) Angiopoietins/TIE2 system and VEGF are involved in ovarian function in a DHEA rat model of polycystic ovary syndrome. Endocrinology 153(7):3446–3456. https://doi.org/10.1210/en.2012-1105

    Article  CAS  PubMed  Google Scholar 

  46. Liebert AD, Bicknell BT, Adams RD (2014) Protein conformational modulation by photons: a mechanism for laser treatment effects. Med Hypotheses 82(3):275–281. https://doi.org/10.1016/j.mehy.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  47. Shin HS, Lee C, Choi JCY (2012) Effects of LED light spectra on the growth of the yellowtail clownfish, Amphiprion clarkia. Fish Sci 78:549–556. https://doi.org/10.1007/s12562-012-0482-8

    Article  CAS  Google Scholar 

  48. Huang L, Tang Y, Xing D (2013) Activation of nuclear estrogen receptors induced by low-power laser irradiation via PI3-K/Akt signaling cascade. J Cell Physiol 228:1045–1059. https://doi.org/10.1002/jcp.24252

    Article  CAS  PubMed  Google Scholar 

  49. Berisha B, Schams D (2005) Ovarian function in ruminants. Domest Anim Endocrinol 29(2):305–317. https://doi.org/10.1016/j.domaniend.2005.02.035

    Article  CAS  PubMed  Google Scholar 

  50. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24(6):705–771. https://doi.org/10.1089/pho.2006.24.705

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received support from Atatürk University Scientific Research Projects (TSA-2019-7440).

Author information

Authors and Affiliations

Authors

Contributions

Bülent Polat, Damla Tuğçe Okur: literature search, study design, data collection and interpretation, and manuscript preparation. Damla Tuğçe Okur, Armağan Çolak, Kader Yilmaz: statistical analysis, data collection, interpretation, and manuscript preparation. Selim Çomaklı, Mustafa Özkaraca: histopathological analysis and evaluation.

Corresponding author

Correspondence to Damla Tuğçe Okur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, B., Okur, D.T., Çolak, A. et al. The effects of low-level laser therapy on polycystic ovarian syndrome in rats: three different dosages. Lasers Med Sci 38, 177 (2023). https://doi.org/10.1007/s10103-023-03847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03847-6

Keywords

Navigation