Skip to main content

Advertisement

Log in

Investigation of the effectiveness of sonic, ultrasonic and new laser-assisted irrigation activation methods on smear removal and tubular penetration

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the effectiveness of different irrigation activation methods on smear layer removal and tubular penetration. One hundred-five distal roots of mandibular molar teeth in total; 50 for smear removal efficiency (n = 10) analysis using scanning electron microscopy (SEM), and 55 roots were used to examine tubular penetration using confocal laser scanning microscope (CLSM). Five different irrigation activation methods were used in this study; conventional needle irrigation (CNI), sonic irrigation device of EDDY, passive ultrasonic irrigation (PUI), PIPS and SWEEPS techniques, which are two different laser irrigation activation methods. The obtained data were statistically analyzed and the significance level was determined as p < 0.05. At the apical level, the cleanest canal walls were observed when laser methods PIPS and SWEEPS were used, while in the middle third, there was no difference in smear removal efficiencies between all groups except for the CNI (p > 0.05). Penetration depths and percentages increased from apically to coronally in all groups. The PUI and EDDY generally showed similar penetration depths and percentages to the CNI, except at the coronal root level (p > 0.05). In all groups, when PIPS was used, it showed greater penetration depth and percentage (p < 0.05). PIPS and SWEEPS techniques showed lowest and similar smear scores compared to PUI and EDDY in the apical area where access and effectiveness of the irrigation solution are difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are within the article.

References

  1. Wu MK, Dummer PMH, Wesselink PR (2006) Consequences of and strategies to deal with residual post-treatment root canal infection. Int Endod J 39(5):343–356. https://doi.org/10.1111/j.1365-2591.2006.01092.x

    Article  PubMed  Google Scholar 

  2. Yilmaz A, Yalcin TY, Helvacioglu-Yigit D (2020) Effectiveness of various final ırrigation techniques on sealer penetration in curved roots: a confocal laser scanning microscopy study. Biomed Res Int. https://doi.org/10.1155/2020/8060489.eCollection2020

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matos FDS, da Silva FR, Paranhos LR et al (2020) The effect of 17% EDTA and QMiX ultrasonic activation on smear layer removal and sealer penetration: ex vivo study. Scı Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-67303-z

    Article  CAS  Google Scholar 

  4. Kokkas AB, Boutsioukis AC, Vassiliadis LP et al (2004) The influence of the smear layer on dentinal tubule penetration depth by three different root canal sealers: an in vitro study. J Endod 30(2):100–102. https://doi.org/10.1097/00004770-200402000-00009

    Article  PubMed  Google Scholar 

  5. Moon YM, Kim HC, Bae KS, Baek SH, Shon WJ, Lee W (2012) Effect of laser-activated irrigation of 1320-nanometer Nd: YAG laser on sealer penetration in curved root canals. J Endod 38(4):531–535. https://doi.org/10.1016/j.joen.2011.12.008

    Article  PubMed  Google Scholar 

  6. Gu LS, Kim JR, Ling J et al (2009) Review of contemporary irrigant agitation techniques and devices. J Endod 35(6):791–804. https://doi.org/10.1016/j.joen.2009.03.010

    Article  PubMed  Google Scholar 

  7. Jiang LM, Verhaagen B, Versluis M et al (2011) The influence of the ultrasonic intensity on the cleaning efficacy of passive ultrasonic irrigation. J Endod 37:688–692. https://doi.org/10.1016/j.joen.2011.02.004

    Article  PubMed  Google Scholar 

  8. Urban K, Donnermeyer D, Schäfer E et al (2017) Canal cleanliness using different irrigation activation systems: a SEM evaluation. Clin Oral Investig 21(9):2681–2687. https://doi.org/10.1007/s00784-017-2070-x

    Article  CAS  PubMed  Google Scholar 

  9. Plotino G, Grande NM, Mercade M et al (2019) Efficacy of sonic and ultrasonic irrigation devices in the removal of debris from canal irregularities in artificial root canals. J Appl Oral Sci 27:1–6. https://doi.org/10.1590/1678-7757-2018-0045

    Article  CAS  Google Scholar 

  10. Haupt F, Meinel M, Gunawardana A et al (2020) Effectiveness of different activated irrigation techniques on debris and smear layer removal from curved root canals: a SEM evaluation. Aust Endod J 46(1):40–46. https://doi.org/10.1111/aej.12342

    Article  PubMed  Google Scholar 

  11. Su Z, Li Z, Shen Y et al (2020) Characteristics of the irrigant flow in a simulated lateral canal under two typical laser-activated irrigation regimens. Lasers Surg Med 53(4):587–594. https://doi.org/10.1002/lsm.23317

    Article  Google Scholar 

  12. Yang Q, Liu MW, Zhu LX et al (2020) Micro-CT study on the removal of accumulated hard-tissue debris from the root canal system of mandibular molars when using a novel laser-activated irrigation approach. Int Endod J 53(4):529–538. https://doi.org/10.1111/iej.13250

    Article  CAS  PubMed  Google Scholar 

  13. Lukač N, Jezeršek M (2018) Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er: YAG laser pulses. Lasers Med Sci 33(4):823–833. https://doi.org/10.1007/s10103-017-2435-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galler KM, Grubmüller V, Schlichting R et al (2019) Penetration depth of irrigants into root dentine after sonic, ultrasonic and photoacoustic activation. Int Endod J 52(8):1210–1217. https://doi.org/10.1111/iej.13108

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira KVD, Silva BMD, Leonardi DP et al (2017) Effectiveness of different final irrigation techniques and placement of endodontic sealer into dentinal tubules. Braz Oral Res 31:1–8. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0114

    Article  Google Scholar 

  16. Gharib SR, Tordik PA, Imamura GM et al (2007) A confocal laser scanning microscope investigation of the epiphany obturation system. J Endod 33(8):957–961. https://doi.org/10.1016/j.joen.2007.03.011

    Article  PubMed  Google Scholar 

  17. Jhajharia K, Parolia A, Shetty KV et al (2015) Biofilm in endodontics: a review. J Int Soc Prev Community Dent 5(1):1–12. https://doi.org/10.4103/2231-0762.151956

    Article  PubMed  PubMed Central  Google Scholar 

  18. D’Arcangelo C, Varvara G, De Fazio P (1999) An evaluation of the action of different root canal irrigants on facultative aerobic-anaerobic, obligate anaerobic, and microaerophilic bacteria. J Endod 25(5):351–353. https://doi.org/10.1016/S0099-2399(06)81170-2

    Article  CAS  PubMed  Google Scholar 

  19. Abarajithan M, Dham S, Velmurugan N et al (2011) Comparison of Endovac irrigation system with conventional irrigation for removal of intracanal smear layer: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(3):407–411. https://doi.org/10.1016/j.tripleo.2011.02.024

    Article  PubMed  Google Scholar 

  20. Gulabivala K, Patel B, Evans G et al (2005) Effects of mechanical and chemical procedures on root canal surfaces. Endod Top 10(1):103–122

    Article  Google Scholar 

  21. Mancini M, Cerroni L, Palopoli P et al (2021) FESEM evaluation of smear layer removal from conservatively shaped canals: laser activated irrigation (PIPS and SWEEPS) compared to sonic and passive ultrasonic activation-an ex vivo study. BMC Oral Health 21(1):81. https://doi.org/10.1186/s12903-021-01427-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vatanpour M, Toursavadkouhi S, Sajjad S (2022) Comparison of three irrigation methods: SWEEPS, ultrasonic, and traditional irrigation, in smear layer and debris removal abilities in the root canal, beyond the fractured instrument. Photodiagnosis Photodyn Ther 37:102707. https://doi.org/10.1016/j.pdpdt.2021.102707

    Article  PubMed  Google Scholar 

  23. Piai GG, Duarte MAH, Nascimento ALD et al (2018) Penetrability of a new endodontic sealer: a confocal laser scanning microscopy evaluation. Microsc Res Tech 81(11):1246–1249. https://doi.org/10.1002/jemt.23129

    Article  PubMed  Google Scholar 

  24. Kuçi A, Alaçam T, Yavaş Ö et al (2014) Sealer penetration into dentinal tubules in the presence or absence of smear layer: a confocal laser scanning microscopic study. J Endod 40(10):1627–1631. https://doi.org/10.1016/j.joen.2014.03.019

    Article  PubMed  Google Scholar 

  25. Kosarieh E, Bolhari B, Pirayvatlou S et al (2021) Effect of Er:YAG laser irradiation using SWEEPS and PIPS technique on dye penetration depth after root canal preparation. Photodiagnosis Photodyn Ther 33:102136. https://doi.org/10.1016/j.pdpdt.2020.102136

    Article  CAS  PubMed  Google Scholar 

  26. Kara Tuncer A, Tuncer S, Gökyay SS (2014) Correlation between sealer penetration into dentinal tubules and bond strength of two new calcium silicate-based and an epoxy resin-based, endodontic sealer. J Adhes Sci Technol 28(7):702–710. https://doi.org/10.1080/01694243.2013.862979

    Article  CAS  Google Scholar 

  27. Generali L, Cavani F, Serena V et al (2017) Effect of different irrigation systems on sealer penetration into dentinal tubules. J Endod 43(4):652–656. https://doi.org/10.1016/j.joen.2016.12.004

    Article  PubMed  Google Scholar 

  28. El Hachem R, Khalil I, Le Brun G et al (2019) Dentinal tubule penetration of AH Plus, BC Sealer and a novel tricalcium silicate sealer: a confocal laser scanning microscopy study. Clin Oral Investig 23(4):1871–1876. https://doi.org/10.1007/s00784-018-2632-6

    Article  PubMed  Google Scholar 

  29. Wang Y, Liu S, Dong Y (2018) In vitro study of dentinal tubule penetration and filling quality of bioceramic sealer. PLoS One 13(2):e0192248. https://doi.org/10.1371/journal.pone.0192248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paqué F, Luder HU, Sener B et al (2006) Tubular sclerosis rather than the smear layer impedes dye penetration into the dentine of endodontically instrumented root canals. Int Endod J 39(1):18–25. https://doi.org/10.1111/j.1365-2591.2005.01042.x

    Article  PubMed  Google Scholar 

  31. Turkel E, Onay EO, Ungor M (2017) Comparison of three final ırrigation activation techniques: effects on canal cleanness, smear layer removal, and dentinal tubule penetration of two root canal sealers. Photomed Laser Surg 35(12):672–681. https://doi.org/10.1089/pho.2016.4234

    Article  CAS  PubMed  Google Scholar 

  32. Akcay M, Arslan H, Mese M et al (2017) Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study. Clin Oral Investig 21(7):2205–2212. https://doi.org/10.1007/s00784-016-2013-y

    Article  PubMed  Google Scholar 

  33. Keskin NB, Bozkurt DA, İnce Yusufoğlu S (2022) Evaluation of dentinal tubule penetration of ırritrol and chlorhexidine irrigating solutions activated using EDDY and photon-initiated photoacoustic streaming. Photodiagnosis Photodyn Ther 39:102925. https://doi.org/10.1016/j.pdpdt.2022.102925

    Article  CAS  PubMed  Google Scholar 

  34. Korkut E, Torlak E, Gezgin O et al (2018) Antibacterial and smear layer removal efficacy of Er:YAG laser ırradiation by photon-ınduced photoacoustic streaming in primary molar root canals: a preliminary study. Photomed Laser Surg 36(9):480–486. https://doi.org/10.1089/pho.2017.4369

    Article  CAS  PubMed  Google Scholar 

  35. Arslan H, Capar ID, Saygili G et al (2014) Effect of photon-initiated photoacoustic streaming on removal of apically placed dentinal debris. Int Endod J 47(11):1072–7. https://doi.org/10.1111/iej.12251

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Yin X, Chang JW et al (2013) Comparison of the antibacterial effect and smear layer removal using photon-initiated photoacoustic streaming aided irrigation versus a conventional irrigation in single-rooted canals: an in vitro study. Photomed Laser Surg 31(8):371–377. https://doi.org/10.1089/pho.2013.3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olivi G (2013) Laser use in endodontics: evolution from direct laser irradiation to laser-activated irrigation. J Laser Dent 21(2):58–71

    Google Scholar 

  38. Peters OA, Bardsley S, Fong J et al (2011) Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod 37(7):1008–1012. https://doi.org/10.1016/j.joen.2011.03.016

    Article  PubMed  Google Scholar 

  39. Pedullà E, Genovese C, Campagna E et al (2012) Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J 45(9):865–870. https://doi.org/10.1111/j.1365-2591.2012.02044.x

    Article  PubMed  Google Scholar 

  40. Aydın ZU, Özyürek T, Keskin B et al (2019) Effect of chitosan nanoparticle, QMix, and EDTA on TotalFill BC sealers’ dentinal tubule penetration: a confocal laser scanning microscopy study. Odontol 107(1):64–71. https://doi.org/10.1007/s10266-018-0359-0

    Article  CAS  Google Scholar 

  41. Bharti R, Tikku AP, Chandra A et al (2018) Depth and percentage of resin-based sealer penetration inside the dentinal tubules using EndoVac, EndoActivator, Navi tip FX irrigation system: a confocal laser scanning microscope study. J Conserv Dent 21(2):216. https://doi.org/10.4103/JCD.JCD_222_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

“This study was supported by Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit. Project Number: THD-2021–3472”.

Author information

Authors and Affiliations

Authors

Contributions

Plan, design: Gülşah Uslu, Mustafa Gündoğar, Mete Üngör, Taha Özyürek, Erhan Erkan, Neslihan Büşra Keskin. Material, methods and data collection: Gülşah Uslu, Mustafa Gündoğar, Mete Üngör, Taha Özyürek, Erhan Erkan, Neslihan Büşra Keskin. Data analysis and comments: Gülşah Uslu, Mustafa Gündoğar, Erhan Erkan. Writing and corrections: Neslihan Büşra Keskin, Gülşah Uslu.

Corresponding author

Correspondence to Neslihan Büşra Keskin.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Medipol Universities ethics comittee (No: 10840098–772.02-E.58629).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uslu, G., Gündoğar, M., Üngör, M. et al. Investigation of the effectiveness of sonic, ultrasonic and new laser-assisted irrigation activation methods on smear removal and tubular penetration. Lasers Med Sci 38, 30 (2023). https://doi.org/10.1007/s10103-022-03697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-022-03697-8

Keywords

Navigation