Skip to main content

Advertisement

Log in

Photobiomodulation using LLLT and LED of cells involved in osseointegration and peri-implant soft tissue healing

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the influence of photobiomodulation (PBM) using low-level laser therapy (PBM/LLLT) or light-emitting diode (PBM/LED) therapy on peri-implant tissue healing. A laboratory model was used to assess the adhesion and metabolism of osteoblasts (SaOs-2), human gingival fibroblasts (HGF), and normal oral keratinocytes (NOK) seeded on a titanium (Ti) surface. After seeding the cells on disks of Ti placed in wells of 24-well plates, three irradiations were performed every 24 h at energy density of 3 J/cm2. For PBM/LLLT, a LaserTABLE device was used with a wavelength of 780 nm and 25 mW, while for PBM/LED irradiation, a LEDTABLE device was used at 810 nm, 20 mW, at a density of 3 J/cm2. After irradiations, the number of cells (NC) attached and spread on the Ti surface, cell viability (CV), total protein (TP), and collagen (Col) synthesis were assessed. Alkaline phosphate activity (ALP) was evaluated only for SaOs-2. Data were submitted to ANOVA complemented by Turkey statistical tests at a 5% significance level. PBM significantly increased adherence of NOK to the Ti surface, while no significant effect was observed for SaOs-2 and HGF. PBM positively affected CV, as well as Col and TP synthesis, in distinct patterns according to the cell line. Increased ALP activity was observed only in those cells exposed to PBM/LLLT. Considering cell specificity, this investigation reports that photobiomodulation with low-power laser and LED at determined parameters enhances cellular functions related to peri-implant tissue healing in a laboratory model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417

    Article  Google Scholar 

  2. Al-Ghamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249

    Article  Google Scholar 

  3. Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B Biol 140:344–358

    Article  CAS  Google Scholar 

  4. Tsai S, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207

    Article  CAS  Google Scholar 

  5. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212

    Article  CAS  Google Scholar 

  6. Saquib S, Jadhav V, Priyanka N, Perla N (2014) Low-level laser therapy in dentistry: a review. Int J Contemp Dent Med Rev:111214-111217

  7. Arany PR (2016) Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res 95(9):977–984

    Article  CAS  Google Scholar 

  8. Basso FG, Soares DG, Pansani TN, Cardoso LM, Scheffel DL, de Souza Costa CA, Hebling J (2016) Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge. Lasers Surg Med 48(10):1006–1014

    Article  Google Scholar 

  9. Basso FG, Pansani TN, Soares DG, Hebling J, de Souza Costa CA (2018) LLLT Effects on oral keratinocytes in an organotypic 3D model. Photochem Photobiol 94(1):190–194

    Article  CAS  Google Scholar 

  10. Cardoso LM, Pansani TN, Hebling J, de Souza Costa CA, Basso FG (2020) Photobiomodulation of inflammatory-cytokine-related effects in a 3-D culture model with gingival fibroblasts. Lasers Med Sci 35(5):1205–1212

    Article  Google Scholar 

  11. Jayesh RS, Dhinakarsamy V (2015) Osseointegration. J Pharm Bioallied Sci 7(Suppl 1):S226–S229

    PubMed  PubMed Central  Google Scholar 

  12. Trindade R, Albrektsoon T, Wennerberg A (2015) Current concepts for the biological basis of dental implants. Oral Maxillofac Surg Clin North Am 27(2):175–183

    Article  Google Scholar 

  13. An N, Rausch-fan X, Wieland M, Matejka M, Andrukhov O, Schedle A (2012) Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent Mater 28(12):1207–1214

    Article  CAS  Google Scholar 

  14. Tang E, Arany P (2013) Photobiomodulation and implants: implications for dentistry. J Periodontal Implant Sci 43(6):262–268

    Article  Google Scholar 

  15. Zayed SA, Hakim AAA (2020) Clinical efficacy of photobiomodulation on dental implant osseointegration: a systematic review. Saudi J Med Med Sci 8(2):80–86

    PubMed  PubMed Central  Google Scholar 

  16. Aoki A, Mizutani K, Schwarz F, Scullean A, Yukna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL, Koshy G, Coluzzi DJ, White JM, Abiko Y, Ishikawa I, Izumi Y (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontol 68(1):217–269

    Article  Google Scholar 

  17. Hosseinpour S, Fekrazad R, Arany PR, Ye Q (2019) Molecular impacts of photobiomodulation on bone regeneration: a systematic review. Prog Biophys Mol Biol 149:147–159

    Article  CAS  Google Scholar 

  18. Pansani TN, Basso FG, Souza IDR, Hebling J, de Souza Costa CA (2019) Characterization of titanium surface coated with epidermal growth factor and its effect on human gingival fibroblasts. Arch Oral Biol 102:48–54

    Article  CAS  Google Scholar 

  19. Basso FG, Pansani TN, Soares DG, Cardoso LM, Hebling J, de Souza Costa CA (2018) Influence of bisphosphonates on the adherence and metabolism of epithelial cells and gingival fibroblasts to titanium surfaces. Clin Oral Investig 22(2):893–900

    Article  Google Scholar 

  20. Basso FG, Pansani TN, Cardoso LM, Hebling J, Vila Real RP, de Souza Costa CA (2020) Influence of bisphosphonates on the behaviour of osteoblasts seeded onto titanium discs. Braz Dent J 31(3):304–309

    Article  Google Scholar 

  21. Ates GB, Can AA, Gülsoy M (2017) Investigation of photobiomodulation potentiality by 634 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32(3):591–599

    Article  Google Scholar 

  22. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787

    Article  Google Scholar 

  23. Lins EC, Oliveira CF, Guimarães OC, Costa CA, Kurachi C, Bagnato VS (2013) A novel 785-nm laser diode-based system for standardization of cell culture irradiation. Photomed Laser Surg 31(10):466–473

    Article  Google Scholar 

  24. Turrioni AP, Basso FG, Montoro LA (2014) Almeida LdeF, de Souza Costa CA, Hebling J. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth. J Dent 42(10):1292–1299

    Article  CAS  Google Scholar 

  25. Bartold PM, Walsh LJ, Narayanan S (2000) Molecular and cell biology of the gingiva. Periodontol 24:28–55

    Article  CAS  Google Scholar 

  26. Joos U, Wiessmann HP, Szuwart T, Meyer U (2006) Mineralization at the interface of implants. Int J Oral Maxillofac Surg 35(9):783–790

    Article  CAS  Google Scholar 

  27. Chang P, Lang NP, Gianobile WV (2010) Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants: a review. Clin Oral Implants Res 21(1):1–12

    Article  Google Scholar 

  28. Esfahanizadeh N, Motalebi S, Daneshparvar N, Akhoundi N, Bonakdar S (2016) Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces. Lasers Med Sci 31(5):863–873

    Article  Google Scholar 

  29. Khadra M, Lyngstadaas SP, Haanæs HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509

    Article  CAS  Google Scholar 

  30. Pagin MT, Oliveira FA, Oliveira RC, Sant’Ana ACP, Rezende MLR, Greghi SLA, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59

    Article  Google Scholar 

  31. Deana AM, Souza AM, Teixeira VP, Mesquita-Ferrari RA, Bussadori SK, Fernandes KPS (2018) The impact of photobiomodulation on osteoblast-like cell: a review. Lasers Med Sci 33(5):1147–1158

    Article  Google Scholar 

  32. Cancakya AB, Erdem MA, Erdem AP, Erguven M, Aybar B, Kasapoglu C, Bilir A (2011) Evaluation of light-emmiting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. Int J Med Sci 8(7):584–593

    Article  Google Scholar 

  33. Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 41(4):298–304

    Article  Google Scholar 

  34. Ross AM, Jiang Z, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8(3):336–355

    Article  CAS  Google Scholar 

  35. Salvi GE, Bosshardt DD, Lang NP, Abrahamsoon I, Berglundh T, Lindhe J, Ivanovski S, Donos N (2015) Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 68(1):135–152

    Article  Google Scholar 

  36. Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017

    Article  CAS  Google Scholar 

  37. Al-Wattar WMA, Al-Wattar WM, Al-Radha ASD (2017) Microbiological and cytological response to dental implant healing abutment. J Int Dental Med Res 10(3):891–898

    Google Scholar 

  38. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Determining optimal dose of laser therapy for attachment and proliferation of human oral fibroblasts cultured on titanium implant material. J Biomed Mater Res A 73(1):55–62

    Article  Google Scholar 

  39. Roncati M, Lauritano D, Cura F, Carinci F (2016) Evaluation of light-emitting diode (LED-835 nm) application over human gingival fibroblast: an in vitro study. J Biol Regul Homeost Agents 30(2 Suppl 1):161–167

    CAS  PubMed  Google Scholar 

  40. Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9(11-12):1148–1156

    Article  CAS  Google Scholar 

  41. De Souza Costa CA, Hebling J, Scheffel DLS, Soares DG, Basso FG, Ribeiro APD (2014) Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater 30(7):769–784

    Article  Google Scholar 

Download references

Funding

The National Council for Scientific and Technological Development, CNPq (Grant # 302108/2019-0) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Gonçalves Basso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rech, C.A., Pansani, T.N., Cardoso, L.M. et al. Photobiomodulation using LLLT and LED of cells involved in osseointegration and peri-implant soft tissue healing. Lasers Med Sci 37, 573–580 (2022). https://doi.org/10.1007/s10103-021-03299-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03299-w

Keywords

Navigation