Skip to main content

Advertisement

Log in

Could the photobiomodulation therapy induce angiogenic growth factors expression from dental pulp cells?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effect of different photobiomodulation (PBM) radiant exposures on the viability, proliferation, and gene expression of pulp fibroblasts from human primary teeth (HPF) involved in the pulp tissue repair. HPF were irradiated with Laser InGaAlP (Twin Flex Evolution, MMOptics®) at 660-nm wavelength (red); single time, continuous mode, 0.04-cm2 laser tip area, and 0.225-cm laser tip diameter, keeping the distance of 1 mm between the laser beam and the cell culture. The doses used were between 1.2 and 6.2 J/cm2 and were evaluated at the 6 h, 12 h, and 24 h after PBM. MTT and crystal violet assays evaluated the cell viability and proliferation. RT-PCR verified VEGF and FGF-2 mRNA expression. A blinded examiner analyzed the data through two-way ANOVA followed by Tukey test (p < 0.05). The groups with higher powers (10 mW, 15 mW, 20 mW, and 25 mW), shortest application periods (10 s), and radiant exposures between 2.5 and 6.2 J/cm2 exhibited statistically higher viability than that of the groups with small power (5 mW), longer application period (50 s), and radiant exposure of 6.2 J/cm2 (p < 0.05). VEGF and FGF-2 mRNA expression were observed at the three evaluated periods (6 h, 12 h, and 24 h) and the highest expression was in the shortest period (p < 0.05). All radiant exposures maintained HPF viable. The period of 6 h after irradiation showed statistically greater gene expression for both growth factors than other periods. VEGF mRNA had no differences among the dosimetries studied. The best radiant exposures for FGF-2 gene expression were 2.5 J/cm2 and 3.7 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grando Mattuella L, Westphalen Bento L, de Figueiredo JA, Nor JE, de Araujo FB, Fossati AC (2007) Vascular endothelial growth factor and its relationship with the dental pulp. J Endod 33:524–530. https://doi.org/10.1016/j.joen.2007.01.003

    Article  PubMed  Google Scholar 

  2. Jeanneau C, Lundy FT, El Karim IA, About I (2017) Potential therapeutic strategy of targeting pulp fibroblasts in dentin-pulp regeneration. J Endod 43:S17–S24. https://doi.org/10.1016/j.joen.2017.06.007

    Article  PubMed  Google Scholar 

  3. Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40:S46–S51. https://doi.org/10.1016/j.joen.2014.01.021

    Article  PubMed  Google Scholar 

  4. Moretti AB, Sakai VT, Oliveira TM, Fornetti AP, Santos CF, Machado MA et al (2008) The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41:547–555. https://doi.org/10.1111/j.1365-2591.2008.01377.x

    Article  CAS  PubMed  Google Scholar 

  5. Oliveira TM, Moretti AB, Sakai VT, Lourenco Neto N, Santos CF, Machado MA et al (2013) Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. Eur Arch Paediatr Dent 14:65–71. https://doi.org/10.1007/s40368-013-0015-x

    Article  CAS  PubMed  Google Scholar 

  6. Taylor GD, Vernazza CR, Abdulmohsen B (2019) Success of endodontic management of compromised first permanent molars in children: a systematic review. Int J Paediatr Dent. https://doi.org/10.1111/ipd.12599

  7. American Academy of Pediatric Dentistry (AAPD) (2014) Reference manual: pulp therapy for primary and immature permanent teeth. 44(6):353–361 Accessed October 8, 2020

  8. Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36:781–789. https://doi.org/10.1016/j.joen.2010.02.006

    Article  PubMed  Google Scholar 

  9. Kim JH, Jeon M, Song JS, Lee JH, Choi BJ, Jung HS et al (2014) Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth. PLoS One 9:e102893. https://doi.org/10.1371/journal.pone.0102893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marques NC, Neto NL, Rodini Cde O, Fernandes AP, Sakai VT, Machado MA et al (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30:1815–1822. https://doi.org/10.1007/s10103-014-1656-7

    Article  PubMed  Google Scholar 

  11. Niranjani K, Prasad MG, Vasa AA, Divya G, Thakur MS, Saujanya K (2015) Clinical evaluation of success of primary teeth pulpotomy using mineral trioxide aggregate(R), laser and biodentine(TM)—an in vivo study. J Clin Diagn Res 9:ZC35–ZC37. https://doi.org/10.7860/JCDR/2015/13153.5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marques NCT, Neto NL, Prado MTO, Vitor LLR, Oliveira RC, Sakai VT et al (2017) Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth. Lasers Med Sci 32:1621–1628. https://doi.org/10.1007/s10103-017-2301-z

    Article  PubMed  Google Scholar 

  13. Prado MTO, Vitor LLR, Lourenço Neto N, Marques NCT, Sakai VT, Rios D, Cruvinel T, Oliveira RC, Santos CF, Machado MAAM, Oliveira TM (2019) Effects of different culture media, cell densities and adhesion periods on stem cells from human exfoliated deciduous teeth after photobiomodulation. Laser Phys Lett 16:095601. https://doi.org/10.1088/1612-202X/ab3452

    Article  CAS  Google Scholar 

  14. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12. https://doi.org/10.1002/lsm.20117

    Article  PubMed  Google Scholar 

  15. Vitor LLR, Prado MTO, Lourenço Neto N, Oliveira RC, Santos CF, Machado MAAM, Oliveira TM (2018) Photobiomodulation changes type 1 collagen gene expression by pulp fibroblasts. Laser Phys 28:065603. https://doi.org/10.1088/1555-6611/aabd16

    Article  CAS  Google Scholar 

  16. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23:211–215. https://doi.org/10.1007/s10103-007-0477-3

    Article  PubMed  Google Scholar 

  17. Oliveira Prado Bergamo MT, Vitor LLR, Lopes NM, Lourenco Neto N, Dionisio TJ, Oliveira RC et al (2020) Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study. Lasers Med Sci. https://doi.org/10.1007/s10103-020-02975-7

  18. Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194. https://doi.org/10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  19. Goldberg M, Njeh A, Uzunoglu E (2015) Is pulp inflammation a prerequisite for pulp healing and regeneration? Mediat Inflamm 2015:347649. https://doi.org/10.1155/2015/347649

    Article  CAS  Google Scholar 

  20. Rombouts C, Giraud T, Jeanneau C, About I (2017) Pulp vascularization during tooth development, regeneration, and therapy. J Dent Res 96:137–144. https://doi.org/10.1177/0022034516671688

    Article  CAS  PubMed  Google Scholar 

  21. Shimabukuro Y, Ueda M, Ozasa M, Anzai J, Takedachi M, Yanagita M et al (2009) Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod 35:1529–1535. https://doi.org/10.1016/j.joen.2009.08.010

    Article  PubMed  Google Scholar 

  22. Fernandes AP, Lourenco Neto N, Teixeira Marques NC, Silveira Moretti AB, Sakai VT, Cruvinel Silva T et al (2015) Clinical and radiographic outcomes of the use of low-level laser therapy in vital pulp of primary teeth. Int J Paediatr Dent 25:144–150. https://doi.org/10.1111/ipd.12115

    Article  PubMed  Google Scholar 

  23. Ansari G, Safi Aghdam H, Taheri P, Ghazizadeh Ahsaie M (2018) Laser pulpotomy—an effective alternative to conventional techniques—a systematic review of literature and meta-analysis. Lasers Med Sci 33:1621–1629. https://doi.org/10.1007/s10103-018-2588-4

    Article  PubMed  Google Scholar 

  24. Fernandes A, Marques NCT, Vitor LLR, Prado MTO, Oliveira RC, Machado MAAM, Oliveira TM (2018) Cellular response of pulp fibroblast to single or multiple photobiomodulation applications. Laser Phys 28:065604. https://doi.org/10.1088/1555-6611/aab952

    Article  CAS  Google Scholar 

  25. Volpato LER, Oliveira RC, Espinosa MM, Bagnato VS, Machado MAAM (2011) Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light emitting diode. J Biomed Opt 16:075004. https://doi.org/10.1117/1.3602850

    Article  CAS  PubMed  Google Scholar 

  26. Souza LM, Rinco UG, Aguiar DAC, de Almeida Junior LA, Silva LC, Oliveira TM, Sakai VT, Marques NCT (2018) Effect of low-level laser therapy on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions. Laser Phys 28:025603 (5pp). https://doi.org/10.1088/1555-6611/aa8e79

    Article  CAS  Google Scholar 

  27. Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues M, Moura-Netto C, Marques MM (2019) Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci 34(4):659–666. https://doi.org/10.1007/s10103-018-2637-z

    Article  CAS  PubMed  Google Scholar 

  28. Marques NP, Lopes CS, Marques NCT, Cosme-Silva L, Oliveira TM et al (2019) A preliminary comparison between the effects of red and infrared laser irradiation on viability and proliferation of SHED. Lasers Med Sci 34(3):465–471

    Article  Google Scholar 

  29. Silva PCS, Marques NP, Farina MT, Oliveira TM, Duque C et al (2019) Laser treatment contributes to maintain membrane integrity in stem cells from human exfoliated deciduous teeth (shed) under nutritional deficit. Lasers Med Sci 34(1):15–21

    Article  Google Scholar 

  30. Almeida-Junior LA, Marques NCT, Prado MTO, Oliveira TM, Sakai VT (2019) Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 34:1917. https://doi.org/10.1007/s10103-019-02836-y

    Article  PubMed  Google Scholar 

  31. Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. https://doi.org/10.1002/lsm.1107

    Article  CAS  PubMed  Google Scholar 

  32. Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo C de P, et al. (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. 40:433-438. DOI: https://doi.org/10.1002/lsm.20646

  33. Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M et al (2017) Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 32:201–210. https://doi.org/10.1007/s10103-016-2102-9

    Article  PubMed  Google Scholar 

  34. El Nawam H, El Backly R, Zaky A, Abdallah A (2019) Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 34:1689–1698. https://doi.org/10.1007/s10103-019-02804-6

    Article  PubMed  Google Scholar 

  35. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x

    Article  CAS  PubMed  Google Scholar 

  36. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  38. Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113. https://doi.org/10.1016/0003-2697(86)90314-3

    Article  CAS  PubMed  Google Scholar 

  39. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  PubMed  Google Scholar 

  40. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62. https://doi.org/10.22037/jlms.v5i2.5540

    Article  PubMed  PubMed Central  Google Scholar 

  41. Prindeze NJ, Moffatt LT, Shupp JW (2012) Mechanisms of action for light therapy: a review of molecular interactions. Exp Biol Med (Maywood) 237:1241–1248. https://doi.org/10.1258/ebm.2012.012180

    Article  CAS  Google Scholar 

  42. Szezerbaty SKF, de Oliveira RF, Pires-Oliveira DAA, Soares CP, Sartori D, Poli-Frederico RC (2018) The effect of low-level laser therapy (660 nm) on the gene expression involved in tissue repair. Lasers Med Sci 33:315–321. https://doi.org/10.1007/s10103-017-2375-7

    Article  PubMed  Google Scholar 

  43. Yanagita M, Kojima Y, Kubota M, Mori K, Yamashita M, Yamada S et al (2014) Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells. J Dent Res 93:89–95. https://doi.org/10.1177/0022034513511640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by State of São Paulo Research Foundation (Grant #2015-19696-0; #2017/11396-3; #2018/20316-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais Marchini Oliveira.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards (protocol CAAE 53785716.6.0000.5417).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamo, M.T., Vitor, L.L.R., Dionísio, T.J. et al. Could the photobiomodulation therapy induce angiogenic growth factors expression from dental pulp cells?. Lasers Med Sci 36, 1751–1758 (2021). https://doi.org/10.1007/s10103-021-03291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03291-4

Keywords

Navigation