Skip to main content
Log in

Optical coherence tomography parameters as predictors of treatment response to a 577-nm subthreshold micropulse laser in chronic central serous chorioretinopathy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To determine the relation between retinal microstructural changes and the response to 577-nm subthreshold micropulse laser (SML) treatment in chronic central serous chorioretinopathy (cCSC). This retrospective study included 39 eyes of 39 patients with cCSC, treated with the 577-nm SML. The eyes were evaluated in three groups: complete remission, partial remission, and failure groups. The presence of some baseline retinal microstructural changes, thickness of the outer nuclear layer (ONL), status of the ellipsoid zone (EZ), and retinal pigment epithelium (RPE) were evaluated. The changes in central macular thickness (CMT), subretinal fluid (SRF) height, and best-corrected visual acuity (BCVA) were calculated. There were 14, 13, and 12 eyes in the complete remission, partial remission, and failure group, respectively. The baseline EZ and RPE were found intact in 71.4% and 64.3% of the eyes in the complete remission group, respectively; however, these rates were respectively 25% and 16.7% in the failure group (p < 0.05). Extrafoveal foci were present in 35.7% of the eyes in the complete remission group, but none was found in the failure group (p < 0.05). Although there was no statistically significant difference, the baseline ONL thickness was higher, and the hyperreflective dots, retinal bumps, subretinal fibrinous exudates, and PEDs were seen less in the complete remission group. The changes of the BCVA were not significant in any of the groups at the last visit (p > 0.05). The presence of baseline intact EZ and RPE, and extrafoveal foci can potentially be used as predictors of the SML treatment success in cCSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Breukink MB, Dingemans AJ, den Hollander AI, Keunen JE, MacLaren RE, Fauser S, Querques G, Hoyng CB, Downes SM, Boon CJ (2017) Chronic central serous chorioretinopathy: longterm follow-up and vision-related quality of life. Clin Ophthalmol 11:39–46. https://doi.org/10.2147/opth.s115685

    Article  PubMed  Google Scholar 

  2. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118. https://doi.org/10.1016/j.preteyeres.2015.05.003

    Article  CAS  Google Scholar 

  3. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 29(10):1469–1473. https://doi.org/10.1097/IAE.0b013e3181be0a83

    Article  PubMed  Google Scholar 

  4. Nicholson B, Noble J, Forooghian F, Meyerle C (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58(2):103–126. https://doi.org/10.1016/j.survophthal.2012.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP (2008) The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology. 115:169–173. https://doi.org/10.1016/j.ophtha.2007.02.032

    Article  PubMed  Google Scholar 

  6. Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S (2004) Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology 111(2):244–249. https://doi.org/10.1016/j.ophtha.2003.09.024

    Article  PubMed  Google Scholar 

  7. Fok AC, Chan PP, Lam DS, Lai TY (2011) Risk factors for recurrence of serous macular detachment in untreated patients with central serous chorioretinopathy. Ophthalmic Res 46(3):160–163. https://doi.org/10.1159/000324599

    Article  PubMed  Google Scholar 

  8. Salehi M, Wenick AS, Law HA, Evans JR, Gehlbach P (2015) Interventions for central serous chorioretinopathy: a network meta-analysis? Cochrane Database Syst Rev 12:CD011841. https://doi.org/10.1002/14651858.pub2

    Article  Google Scholar 

  9. Scholz P, Altay L, Fauser S (2016) Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond) 30(10):1371–1377. https://doi.org/10.1038/eye.2016.142

    Article  CAS  Google Scholar 

  10. Khosla PK, Rana SS, Tewari HK et al (1997) Evaluation of visual function following argon laser photocoagulation in central serous retinopathy. Ophthalmic Surg Lasers 28:693–697

    Article  CAS  Google Scholar 

  11. Taban M, Boyer DS, Thomas EL et al (2004) Chronic central serous chorioretinopathy: photodynamic therapy. Am J Ophthalmol 137:1073–1080. https://doi.org/10.1016/j.ajo.2004.01.043

    Article  PubMed  Google Scholar 

  12. Artunay O, Yuzbasioğlu E, Rasier R et al (2010) Intravitreal bevacizumab in treatment of idiopathic persistent central serous chorioretinopathy: a prospective controlled clinical study. Curr Eye Res 35:91–98. https://doi.org/10.3109/02713680903428306

    Article  PubMed  CAS  Google Scholar 

  13. Palanker D, Blumenkranz MS. Retinal laser therapy: biophysical basisand applications. In: Ryan S, Wilkinson H, Sadda W, editors. Ch. 39. RETINA. 5th ed. Vol. 1. Elsevier Inc; 2013, p. 752–5

  14. Schatz H, Yannuzzi LA, Gitter KA (1977) Subretinal neovascularization following argon laser photocoagulation treatment for central serous chorioretinopathy: complication or misdiagnosis? Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 83:893–906

    PubMed  CAS  Google Scholar 

  15. Maruko I, Koizumi H, Hasegawa T, Arakawa H, Iida T (2017) Subthreshold 577 nm micropulse laser treatment for central serous chorioretinopathy. PLoS One 12:e0184112. https://doi.org/10.1371/journal.pone.0184112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gulkas S, Sahin O (2019) Current therapeutic approaches to chronic central serous chorioretinopathy. Turk J Ophthalmol 49(1):30–39. https://doi.org/10.4274/tjo.galenos.2018.49035

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elhamid AHA (2015) Subthreshold micropulse yellow laser treatment for nonresolving central serous chorioretinopathy. Clin Ophthalmol 3(9):2277–2283. https://doi.org/10.2147/OPTH.S87499

    Article  Google Scholar 

  18. Lanzetta P, Furlan F, Morgante L, Veritti D, Bandello F (2008) Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous chorioretinopathy. A pilot study. Eur J Ophthalmol 18(6):934–940. https://doi.org/10.1177/112067210801800613

    Article  PubMed  CAS  Google Scholar 

  19. Chen SN, Hwang JF, Tseng LF, Lin CJ (2008) Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology. 115(12):2229–22234. https://doi.org/10.1016/j.ophtha.2008.08.026

    Article  PubMed  Google Scholar 

  20. Yadav NK, Jayadev C, Mohan A, Vijayan P, Battu R, Dabir S et al (2015) Subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome. Eye (Lond). 29(2):258–264. https://doi.org/10.1038/eye.2014.315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mainster MA (1986) Wavelength selection in macular photocoagulation. Ophthalmology. 93:952–958. https://doi.org/10.1016/s0161-6420(86)33637-6

    Article  PubMed  CAS  Google Scholar 

  22. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619. https://doi.org/10.1097/IAE.0b013e3182247535

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sull AC, Vuong LN, Price LL et al (2010) Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245. https://doi.org/10.1097/IAE.0b013e3181bd2c3b

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069. https://doi.org/10.1364/ol.28.002067

    Article  PubMed  Google Scholar 

  25. Borrelli E, Zuccaro B, Zucchiatti I, Parravano M, Querques L et al (2019) Optical coherence tomography parameters as predictors of treatment response to eplerenone in central serous chorioretinopathy. J Clin Med 8(9):1271. https://doi.org/10.3390/jcm8091271

    Article  PubMed Central  CAS  Google Scholar 

  26. Van Rijssen TJ, Mohabati D, Dijkman G, Theelen T, De Jong EK, Van Dijk EHC et al (2018) Correlation between redefined optical coherence tomography parameters and best-corrected visual acuity in non-resolving central serous chorioretinopathy treated with half-dose photodynamic therapy. PLoS One 13(8):e0202549. https://doi.org/10.1371/journal.pone.0202549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cidad P, González E, Asencio M, García J (2015) Structural and functional outcomes in chronic central serous chorioretinopathy treated with photodynamic therapy. Korean J Ophthalmol 29(5):331–335. https://doi.org/10.3341/kjo.2015.29.5.331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ozmert E, Demirel S, Yanik O, Batioglu F (2016) Low-fluence photodynamic therapy versus subthreshold micropulse yellow wavelength laser in the treatment of chronic central serous chorioretinopathy. J Ophthalmol 2016:1–8. https://doi.org/10.1155/2016/3513794

    Article  Google Scholar 

  29. VanDijk EHC, Fauser S, Breukink MB et al (2018) Half-dose photodynamic therapy versus high density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE Trial. Ophthalmology. 125(10):1547–1555. https://doi.org/10.1016/j.ophtha.2018.04.021

    Article  Google Scholar 

  30. Ohkuma Y, Hayashi T, Sakai T et al (2013) One-year results of reduced fluence photodynamic therapy for central serous chorioretinopathy: the outer nuclear layer thickness is associated with visual prognosis. Graefes Arch ClinExp Ophthalmol 251:1909–1917. https://doi.org/10.1007/s00417-013-2289-4

    Article  CAS  Google Scholar 

  31. Ozdemir I, Eren A, Ersöz G (2019) Outer nuclear layer thickness at the fovea relation with symptom duration in central serous chorioretinopathy. Int Ophthalmol 39(6):1323–1328. https://doi.org/10.1007/s10792-018-0950-y

    Article  PubMed  Google Scholar 

  32. Fujita A, Aoyama Y, Tsuneyoshi S et al (2019) Association between visual function and the integrity of residual ellipsoid zone in resolved central serous chorioretinopathy. Sci Rep 9:12433. https://doi.org/10.1038/s41598-019-48825-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hasegawa T, Okamoto M, Masuda N, Ueda T, Ogata N (2015) Relationship between foveal microstructures and visual outcomes in eyes with resolved central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 253(3):343–350. https://doi.org/10.1007/s00417-014-2695-2

    Article  PubMed  Google Scholar 

  34. Eandi CM, Piccolino FC, Alovisi C, et al Function in chronic central serous chorioretinopathy. Am J Ophthalmol 2015;159:652–658.e1. https://doi.org/10.1016/j.ajo.2014.12.023

  35. Yadav NK, Jayadev C, Rajendran A, Nagpal M (2014) Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol 62(1):50–54. https://doi.org/10.4103/0301-4738.126179

    Article  PubMed  PubMed Central  Google Scholar 

  36. Plateroti AM, Witmer MT, Kiss S et al (2014) Characteristics of intraretinal deposits in acute central serous chorioretinopathy. Clin Ophthalmol 8:673–676. https://doi.org/10.2147/OPTH.S48894

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yalcinbayir O, Gelisken O, Akova-Budak B et al (2014) Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina 34:705–712. https://doi.org/10.1097/IAE.0000000000000001

    Article  PubMed  Google Scholar 

  38. Lai W-Y, Tseng C-L, Wu T-T et al (2017) Correlation between baseline retinal microstructures in spectral domain optic coherence tomography and need for early intervention in central serous chorioretinopathy. BMJ Open Ophth 2:e000054. https://doi.org/10.1136/bmjophth-2016-000054

    Article  Google Scholar 

  39. Ersoz MG, Arf S, Hocaoglu M, Muslubas IS, Karacorlu M (2018) Patient characteristics and risk factors for central serous chorioretinopathy: an analysis of 811 patients. Br J Ophthalmol:1–5. https://doi.org/10.1136/bjophthalmol-2018-312431

  40. Lavinsky D, Cardillo JA, Melo LA et al (2011) Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci 52:4314–4323. https://doi.org/10.1167/iovs.10-6828

    Article  PubMed  Google Scholar 

  41. Chhablani J, Alshareef R, Kim DT et al (2018) Comparison of different settings for yellow subthreshold laser treatment in diabetic macular edema. BMC Ophthalmol 18:168. https://doi.org/10.1186/s12886-018-0841-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Guzin Altınel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in experiments involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Declaration of Helsinki. The study was approved by the Scientific Research Commission of Fatih Sultan Mehmet Training and Research Hospital.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altınel, M.G., Acikalin, B., Gunes, H. et al. Optical coherence tomography parameters as predictors of treatment response to a 577-nm subthreshold micropulse laser in chronic central serous chorioretinopathy. Lasers Med Sci 36, 1505–1514 (2021). https://doi.org/10.1007/s10103-020-03225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03225-6

Keywords

Navigation