Skip to main content
Log in

Detecting creatine excreted in the urine of swimming athletes by means of Raman spectroscopy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

High-level sport requires analysis of athletes’ metabolic conditions in order to improve the training. Raman spectroscopy can be used to assess urinary composition advantageously when compared to conventional methods of urinalysis. In this work, Raman spectroscopy has been employed to detect creatine in urine of professional swimmers before and after training compared to sedentaries. It has been collected urine samples from five swimmers before and immediately after 150 min of swimming and submitted to Raman spectroscopy (830 nm excitation, 350 mW laser power, 20 s integration time) and compared to the urine from a control group (14 sedentary subjects). The Raman spectra of urine from four swimmers after training showed peaks related to creatine at 829, 915, 1049, and 1397 cm−1, besides peaks referred to urea, creatinine, ketone bodies, and phosphate. A spectral model estimated the concentration of creatine to be from 0.26 to 0.72 g/dL in the urine of these athletes. The presence of this metabolic biomarker in the urine of some swimmers suggests a metabolic profile influenced by the diet, supplementation, individual metabolism, and the self-response to the training. Raman spectroscopy allows a rapid and reliable detection of creatine excreted in the urine of swimming athletes, which may be used to adjust the nutrition/supplementation of each individual as well as the individual response and energy consumption depending on the type and duration of the training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sahlin K, Harris RC (2011) The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 40:1363–1367

    CAS  PubMed  Google Scholar 

  2. Harris R (2011) Creatine in health, medicine and sport: an introduction to a meeting held at Downing College, University of Cambridge, July 2010. Amino Acids 40:1267–1270

    CAS  PubMed  Google Scholar 

  3. Kreider RB, Jung YP (2011) Invite review: creatine supplementation in exercise, sport, and medicine. J Exerc Nutr Biochem 15:53–69

    Google Scholar 

  4. Kreider RB, Kalman DS, Antonio J et al (2017) International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 14:1–18

    PubMed  PubMed Central  Google Scholar 

  5. Juhn MS, Tarnopolsky M (1998) Oral creatine supplementation and athletic performance: a critical review. Clin J Sports Med 8:286–297

    CAS  Google Scholar 

  6. Terjung RL, Clarkson P, Eichner ER et al (2000) The physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc 32:706–717

    CAS  PubMed  Google Scholar 

  7. Santos RVT, Bassit RA, Caperuto EC et al (2004) The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci 75:1917–1924

    CAS  PubMed  Google Scholar 

  8. Deminice R, Rosa FT, Franco GS et al (2013) Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 29:1127–1132

    CAS  PubMed  Google Scholar 

  9. Kilduff LP, Georgiades E, James N et al (2004) The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int J Sport Nutr Exerc Metab 14:443–460

    CAS  PubMed  Google Scholar 

  10. Tarnopolsky MA (2010) Caffeine and creatine use in sport. Ann Nutr Metab 57:1–8

    CAS  PubMed  Google Scholar 

  11. Dou X, Yamaguchi Y, Yamamoto H et al (1996) Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vib Spectrosc 13:83–89

    CAS  Google Scholar 

  12. Bispo JAM, Vieira EES, Silveira L et al (2013) Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. J Biomed Opt 18:87004

    PubMed  Google Scholar 

  13. Saatkamp CJ, Almeida ML, Bispo JAM et al (2016) Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease. J Biomed Opt 21:37001

    PubMed  Google Scholar 

  14. de Almeida ML, Saatkamp CJ, Fernandes AB et al (2016) Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy. Lasers Med Sci 31:1415–1423

    PubMed  Google Scholar 

  15. Vieira EES, Bispo JAM, Silveira L, Fernandes AB (2017) Discrimination model applied to urinalysis of patients with diabetes and hypertension aiming at diagnosis of chronic kidney disease by Raman spectroscopy. Lasers Med Sci 32:1605–1613

    Google Scholar 

  16. Hanlon E, Manoharan R, Koo T et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1

    CAS  PubMed  Google Scholar 

  17. Silveira L, Borges RCF, Navarro RS et al (2017) Quantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statistics. Lasers Med Sci 32:787–795

    PubMed  Google Scholar 

  18. Rohleder D, Kocherscheidt G, Gerber K et al (2005) Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J Biomed Opt 10:31108

    CAS  Google Scholar 

  19. Rupérez A, Montes R, Laserna JJ (1991) Identification of stimulant drugs by surface-enhanced Raman spectrometry on colloidal silver. Vib Spectrosc 2:145–154

    Google Scholar 

  20. Premasiri WR, Clarke RH, Womble ME (2001) Urine analysis by laser Raman spectroscopy. Lasers Surg Med 28:330–334

    CAS  PubMed  Google Scholar 

  21. Guimarães AE, Pacheco MTT, Silveira L et al (2006) Near infrared Raman spectroscopy (NIRS): a technique for doping control. Spectroscopy 20:185–194

    Google Scholar 

  22. Moreira LP, Silveira L, Pacheco MTT et al (2018) Detecting urine metabolites related to training performance in swimming athletes by means of Raman spectroscopy and principal component analysis. J Photochem Photobiol B Biol 185:223–234

    CAS  Google Scholar 

  23. Moreira LP, Silveira L, da Silva AG et al (2017) Raman spectroscopy applied to identify metabolites in urine of physically active subjects. J Photochem Photobiol B Biol 176:92–99

    CAS  Google Scholar 

  24. Vandenabeele P (2013) Practical Raman spectroscopy: an introduction. J. Wiley & Sons, Chichester

    Google Scholar 

  25. Ostrovskii DI, Yaremko AM, Vorona IP (1997) Nature of background scattering in Raman spectra of materials containing high-wavenumber vibrations. J Raman Spectrosc 28:771–778

    CAS  Google Scholar 

  26. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367

    CAS  PubMed  Google Scholar 

  27. Bell SEJ, Stewart SP, Speers SJ (2012) Infrared and Raman spectroscopy in forensic science. John Wiley & Sons, Chichester

    Google Scholar 

  28. Silveira FL, Pacheco MTT, Bodanese B et al (2015) Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Lasers Surg Med 47:6–16

    PubMed  Google Scholar 

  29. Jolliffe IT (1995) Principal components analysis. Springer-Velag, New York

    Google Scholar 

  30. Keuleers R, Desseyn HO, Rousseau B et al (1999) Vibrational analysis of urea. J Phys Chem A 103:4621–4630

    CAS  Google Scholar 

  31. Bayrak C, Bayarı SH (2010) Vibrational and DFT studies of creatinine and its metal complexes. J Biol Chem 38:107–188

    Google Scholar 

  32. Podstawka E, Światłowska M, Borowiec E et al (2007) Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies. J Raman Spectrosc 38:356–363

    CAS  Google Scholar 

  33. Socrates G (2004) Infrared and Raman characteristic group frequencies - tables and charts. J. Wiley & Sons, Chichester

    Google Scholar 

  34. Lambert JB, Shurvell HF, Cooks RG (1987) Introduction to organic spectroscopy. Macmillan, New York

    Google Scholar 

  35. De Gelder J, Willemse-Erix D, Scholtes MJ et al (2008) Monitoring poly(3-hydroxybutyrate) production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy. Anal Chem 80:2155–2160

    PubMed  Google Scholar 

  36. Furukawa T, Sato H, Murakami R et al (2006) Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (l-lactic acid) blends. Polymer 47:3132–3140

    CAS  Google Scholar 

  37. Hoccart X, Turrell G (1993) Raman spectroscopic investigation of the dynamics of urea–water complexes. J Chem Phys 99:8498–8503

    CAS  Google Scholar 

  38. Frost RL, Kristof J, Rintoul L et al (2000) Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim Acta A Mol Biomol Spectrosc 56:1681–1691

    Google Scholar 

  39. McMurdy JW, Berger AJ (2003) Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population. Appl Spectrosc 57:522–525

    CAS  PubMed  Google Scholar 

  40. Chemical Book Inc (2017) Aminoethanol. http://www.chemicalbook.com/Spectrum/141-43-5_Raman.gif . Accessed 22 November 2017

  41. Hampton C, Demoin D (2010) Vibrational spectroscopy tutorial: sulfur and phosphorus, University of Missouri, Columbia. https://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf. Accessed 08 December 2017

  42. Mossoba MM (1998) Spectral methods in food analysis: instrumentation and applications. Marcel Dekker, New York

    Google Scholar 

  43. Bouatra S, Aziat F, Mandal R et al (2013) The human urine metaboloma. PLoS One 8:e73076

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  45. McArdle WD, Katch FI (2009) Exercise physiology: nutrition, energy, and human performance. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  46. Clark JF (1997) Creatine and phosphocreatine: a review of their use in exercise and sport. J Athl Train 32:45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brudnak MA (2004) Creatine: are the benefits worth the risk. Toxicol Lett 150:123–130

    CAS  PubMed  Google Scholar 

  48. Bezrati-Benayed I, Nasrallah F, Feki M et al (2014) Urinary creatine at rest and after repeated sprints in athletes: a pilot study. Biol Sport 31:49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Gelder J, De Gussem K, Vandenabeele P et al (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Google Scholar 

  50. Tao Z, Peng L, Zhang P et al (2016) Probing the kinetic anabolism of poly-beta-hydroxybutyrate in Cupriavidus necator h16 using single-cell Raman spectroscopy. Sensors 16:1257

    Google Scholar 

  51. Sigma Aldrich (2017) 3-Hydroxybutyric acid. Raman FTIR, Merck KGaA, Darmstad. http://www.sigmaaldrich.com/spectra/rair/RAIR002391.pdf. Accessed 17 October 2017

  52. Robinson M, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60:143–187

    CAS  PubMed  Google Scholar 

  53. Clarke K, Tchabanenko K, Pawlosky R et al (2012) Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol 63:401–408

    CAS  PubMed  Google Scholar 

  54. Koeslag JH, Noakes TD, Sloan AW (1980) Post-exercise ketosis. J Physiol 301:79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426

    CAS  PubMed  Google Scholar 

  56. Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52

    CAS  PubMed  Google Scholar 

  57. Cox PJ, Clarke K (2014) Acute nutritional ketosis: implications for exercise performance and metabolism. Extrem Physiol Med 3:17

    PubMed  PubMed Central  Google Scholar 

  58. Askew EW, Dohm GL, Huston RL (1975) Fatty acid and ketone body metabolism in the rat: response to diet and exercise. J Nutr 105:1422–1432

    CAS  PubMed  Google Scholar 

  59. Walsh NP, Blannin AK, Clark AM et al (1998) The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids. Eur J Appl Physiol Occup Physiol 77:434–438

    CAS  PubMed  Google Scholar 

  60. Koo GH, Woo J, Kang S et al (2014) Effects of supplementation with BCAA and L-glutamine on blood fatigue factors and cytokines in juvenile athletes submitted to maximal intensity rowing performance. J Phys Ther Sci 26:1241–1246

    PubMed  PubMed Central  Google Scholar 

  61. Beelen M, Burke LM, Gibala MJ et al (2010) Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 20:515–532

    CAS  PubMed  Google Scholar 

  62. Bartlett JD, Hawley JA, Morton JP (2015) Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci 15:3–12

    PubMed  Google Scholar 

  63. Burke LM, Hawley JA, Wong SHS et al (2011) Carbohydrates for training and competition. J Sports Sci 29:S17–S27

    PubMed  Google Scholar 

  64. Cermak NM, Van Loon LJC (2013) The use of carbohydrates during exercise as an ergogenic aid. Sports Med 43:1139–1155

    PubMed  Google Scholar 

  65. Johnson RH, Walton JL, Krebs HA et al (1969) Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet 2:452–455

    CAS  PubMed  Google Scholar 

  66. Johnson RH, Walton JL (1971) Fitness, fatness, and post-exercise ketosis. Lancet 297:566–568

    Google Scholar 

  67. Johnson RH, Walton JL (1972) The effect of exercise upon acetoacetate metabolism in athletes and non-athletes. Q J Exp Physiol Cogn Med Sci 57:73–79

    CAS  PubMed  Google Scholar 

  68. Winder WW, Baldwin KM, Holloszy JO (1975) Exercise-induced increase in the capacity of rat skeletal muscle to oxidize ketones. Can J Physiol Pharmacol 53:86–91

    CAS  PubMed  Google Scholar 

  69. Balsom PD, Ekblom B, Söerlund K et al (1993) Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports 3:143–149

    Google Scholar 

  70. Lindh AM, Peyrebrune MC, Ingham SA et al (2008) Sodium bicarbonate improves swimming performance. Int J Sports Med 29:519–523

    CAS  PubMed  Google Scholar 

  71. Gant N, Ali A, Foskett A (2010) The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sport Nutr Exerc Metab 20:191–197

    CAS  PubMed  Google Scholar 

  72. Bompa TO, Buzzichelli CA (2019) Periodization: theory and methodology of training. Human Kinetics, Champaign

    Google Scholar 

Download references

Acknowledgments

L. P. Moreira acknowledges CAPES—Coordination for the Improvement of Higher Education Personnel for the scholarship. The researchers thank the swimming team and the sedentary subjects at the Universidade Santa Cecília (UNISANTA).

Funding

This study was partly funded by FAPESP—São Paulo Research Foundation (Grant no. 2009/01788-5). L. Silveira Jr. received research fellowship from CNPq—National Council for Scientific and Technological Development (Grant no. 305680/2014-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landulfo Silveira Jr.

Ethics declarations

This study was approved by the Ethics Committee of the University Santa Cecilia—UNISANTA (protocol no. 1.133.024).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, L.P., Rocco, D.D.F.M., da Silva, A.G. et al. Detecting creatine excreted in the urine of swimming athletes by means of Raman spectroscopy. Lasers Med Sci 35, 455–464 (2020). https://doi.org/10.1007/s10103-019-02843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02843-z

Keywords

Navigation