Skip to main content

Advertisement

Log in

Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate in vitro whether the low-level laser (LLL) delivering fractionated total energy (multiple irradiation) or single irradiation stimulates regeneration-associated events (viability and proliferation) in stem cells from human exfoliated deciduous teeth (SHED). Cells received LLL irradiation (InGaAlP–660 nm), according to the following experimental groups: G1 (single irradiation 2.5 J/cm2, 10 mW, 10 s, 0.10 J), G2 (single irradiation 5.0 J/cm2, 10 mW, 20 s, 0.20 J), G3 (single irradiation 7.5 J/cm2, 10 mW, 30 s, 0.30 J), G4 (two irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.20 J), G5 (three irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.30 J), and G6 (non-irradiated). Cell viability was assessed by MTT and trypan blue exclusion (TBE) methods, while cell proliferation was evaluated by crystal violet (CV) and sulforhodamine B (SRB) assays after 24, 48, and 72 h after the first irradiation. By MTT, there was no difference between groups at 24 and 72 h. At 48 h, the groups subjected to multiple irradiation (G4 and G5) presented higher cell viability rates. The average percentages of viable cells for all groups by TBE method were 91.04%, 96.63%, and 97.48% at 24, 48, and 72 h, respectively. By CV, there was no significant difference between groups at 24 and 48 h; at 72 h, G2, G3, and G4 presented higher cell proliferation. By SRB, G1 and G4 presented lower proliferation rates in all the periods. When the groups presenting the same total energy were compared, G2 (0.20 J) presented lower cell viability rates and higher cell proliferation rates in comparison with G4; G3 (0.30 J) presented similar results to those of G5, with higher cell viability and proliferation. The application of laser delivering fractionated total energy (two or three applications of 2.5 J/cm2) induced higher cell viability at 48 h, while the single irradiation with 2.5 J/cm2 did not stimulate metabolic activity in such period and the proliferation over time. The 5.0 and 7.5 J/cm2 single doses and the three applications of 2.5 J/cm2 maintained cell viability and stimulated proliferation of SHED at 72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang X, Reddy DD, Nalawade SS, Pal S, Gonzalez-Lima F, Liu H (2018) Impact of heat on metabolic and hemodynamic changes in transcranial infrared laser stimulation measured by broadband near-infrared spectroscopy. Neurophotonics 5:011004. https://doi.org/10.1117/1.NPh.5.1.011004

    Article  PubMed  Google Scholar 

  2. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452. https://doi.org/10.1155/2012/719452

    Article  PubMed  PubMed Central  Google Scholar 

  3. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62

    PubMed  PubMed Central  Google Scholar 

  4. Moura-Netto C, Ferreira LS, Maranduba CM, Mello-Moura ACV, Marques MM (2016) Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency. Braz Oral Res 30:1. https://doi.org/10.1590/1807-3107BOR2016.vol30.0080

    Article  Google Scholar 

  5. Souza LM, Rinco UG, Aguiar DAC, de Almeida Junior LA, Silva LC, Oliveira TM, Sakai VT, Marques NCT (2018) Effect of low-level laser therapy on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions. Laser Phys 28:025603 (5pp). https://doi.org/10.1088/1555-6611/aa8e79

    Article  CAS  Google Scholar 

  6. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540. https://doi.org/10.1038/srep30540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:7000417. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37:3789–3802. https://doi.org/10.1177/0271678X17691783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  PubMed  Google Scholar 

  10. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. https://doi.org/10.1089/PHO.2006.1076

    Article  CAS  PubMed  Google Scholar 

  11. Smith KC (1991) The photobiological basis of low level laser radiation therapy. Laser Ther 3:19–24. https://doi.org/10.5978/islsm.91-OR-03

    Article  Google Scholar 

  12. Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG (2018) Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 33:95–102. https://doi.org/10.1007/s10103-0172355-y

    Article  PubMed  Google Scholar 

  13. Schindl A, Schindl M, Pernerstorfer-Schön H, Schindl L (2000) Low-intensity laser therapy: a review. J Investig Med 48:312–326

    CAS  PubMed  Google Scholar 

  14. Marques NCT, Neto NL, de Oliveira Rodini C, Fernandes AP, Sakai VT, Machado MAAM, Oliveira TM (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30:1815–1822. https://doi.org/10.1007/s10103014-1656-1657

    Article  PubMed  Google Scholar 

  15. Marques NP, Lopes CS, Marques NCT, Cosme-Silva L, Oliveira TM, Duque C, Sakai VT, Hanemann JAC (2018) A preliminary comparison between the effects of red and infrared laser irradiation on viability and proliferation of SHED. Lasers Med Sci. https://doi.org/10.1007/s10103-018-2615-5

    Article  Google Scholar 

  16. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MAAM, Shi S, Nör JE (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89:791–796. https://doi.org/10.1177/0022034510368647

    Article  CAS  PubMed  Google Scholar 

  17. Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE (2011) Dental pulp tissue engineering. Braz Dent J 22:3–13. https://doi.org/10.1590/S0103-64402011000100001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Nör JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969. https://doi.org/10.1016/j.joen.2008.04.009

    Article  PubMed  Google Scholar 

  19. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812. https://doi.org/10.1073/pnas.0937635100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suchánek J, Visek B, Soukup T, El-Din Mohamed SK, Ivancaková R, Mokrỳ J, Aboul-Ezz EH, Omran A (2010) Stem cells from human exfoliated deciduos teeth – isolation, long term cultivation and phenotypical analysis. Acta Med (Hradec Kralove) 53:93–99

    Article  Google Scholar 

  21. He H, Yu J, Liu Y, Lu S, Liu H, Shi J, Jin Y (2008) Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32:827–834. https://doi.org/10.1016/j.cellbi.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  22. Amorin BR, Sallum EA, Casati MZ, Ruiz KGS, Casarini RCV, Kantivitz KR, Nociti Junior FH (2017) Mesenchymal stem cells in periodontics: new perspectives. RGO, Rev Gaúch Odontol 65:254–259. https://doi.org/10.1590/1981-863720170002000113459

    Article  Google Scholar 

  23. Kwack KH, Lee MJ, Park SH, Lee HW (2016) Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T-cells to release transforming growth factor beta. J Endod 43:100–108. https://doi.org/10.1016/j.joen.2016.09.005

    Article  PubMed  Google Scholar 

  24. Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nör JE (2011) Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res 23:325–332. https://doi.org/10.1177/0022034511405325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fernandes AP, Junqueira MA, Marques NC, Machado MA, Santos CF, Oliveira TM, Sakai VT (2016) Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 24:332–337. https://doi.org/10.1590/1678-775720150275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–12630. https://doi.org/10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁC, Barboza CA (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30:2259–2264. https://doi.org/10.1007/s10103-015-1803-9

    Article  PubMed  Google Scholar 

  28. Marques MM, Diniz IM, de Cara SP, Pedroni AC, Abe GL, D'Almeida-Couto RS, Lima PL, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells. Photomed Laser Surg 34:500–508. https://doi.org/10.1089/pho.2015.4038

    Article  PubMed  Google Scholar 

  29. Silva PCS, Marques NP, Farina MT, Oliveira TM, Duque C, Marques NCT, Sakai VT (2018) Laser treatment contributes to maintain membrane integrity in stem cells from human exfoliated deciduous teeth (shed) under nutritional deficit. Lasers Med Sci. https://doi.org/10.1007/s10103-018-2574-x

    Article  Google Scholar 

  30. Halim AB (2018) Do we have a satisfactory cell viability assay? Review of the currently commercially available assays. Curr Drug Discov Technol. https://doi.org/10.2174/1570163815666180925095433

  31. Chung S, Kim SH, Seo Y, Kim SK, Lee JY (2017) Quantitative analysis of cell proliferation by a dye dilution assay: application to cell lines and cocultures. Cytometry A 91:704–712. https://doi.org/10.1002/cyto.a.23105

    Article  CAS  PubMed  Google Scholar 

  32. Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885. https://doi.org/10.1007/s10103-008-0582-y

    Article  PubMed  Google Scholar 

  33. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:1–3. https://doi.org/10.1002/0471142735.ima03bs111

    Article  PubMed  Google Scholar 

  34. Santana DA, Fonseca GF, Ramalho LMP, Rodriguez TT, Aguiar MC (2017) Effect of low-level laser therapy (λ 780 nm) on the mechanically damaged dentin-pulp complex in a model of extrusive luxation in rat incisors. Lasers Med Sci 32:1995–2004. https://doi.org/10.1007/s10103-017-2295-6

    Article  PubMed  Google Scholar 

  35. Fernandes A, Neto NL, Marques NCT, Vitor LLR, Prado MTO, Oliveira RC, Machado MAAM, Oliveira TM (2018) Cellular response of pulp fibroblast to single or multiple photobiomodulation applications. Laser Phys 28:065604. https://doi.org/10.1088/1555-6611/aab952

    Article  CAS  Google Scholar 

  36. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J lmmunol Methods 65:55–63

    Article  CAS  Google Scholar 

  37. Śliwka L, Wiktorska K, Suchocki P, Milczarek M, Mielczarek S, Lubelska K, Cierpiał T, Łyżwa P, Kiełbasiński P, Jaromin A, Flis A, Chilmonczyk (2016) The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0155772

    Article  CAS  Google Scholar 

  38. Orellana EA, Kasinski AL (2016) Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc 6:21. https://doi.org/10.21769/BioProtoc.1984

    Article  Google Scholar 

  39. Karu T (1989) Photobiology of low-power laser effects. Health Phys 56:691–704

    Article  CAS  Google Scholar 

  40. Meneguzzo DT, Eduardo CP, Ribeiro MS, Marques MM (2008) Influence of the fractioned irradiation energy in the phototherapy with low intensity laser on the growth of human dental pulp fibroblasts. Proc SPIE 6846 A-1

  41. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39

    Article  CAS  Google Scholar 

  42. Tipholova OA, Karu TI (1987) Action of monochromatic low-intensity visible light on growth of E. coli. Microbiol 60:626–630

    Google Scholar 

  43. Baxter GD (1997) Therapeutic lasers: theory and practice. Churchill Livingstone, New York

    Google Scholar 

  44. Low L, Reed A (2001) Eletroterapia Explicada: Princípios e Prática. Ed. Manole Ltda, Barueri

    Google Scholar 

  45. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 29:285–304. https://doi.org/10.1089/pho.2010.2846

    Article  CAS  Google Scholar 

  46. Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194. https://doi.org/10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  47. Marques NCT, Neto NL, Prado MTO, Vitor LLR, Oliveira RC, Sakai VT, Santos CF, Machado MAAM, Oliveira TM (2017) Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth. Lasers Med Sci 32:1621–1628. https://doi.org/10.1007/s10103-017-2301-z

    Article  PubMed  Google Scholar 

Download references

Role of funding source

This study was financially supported by Minas Gerais Research Foundation (FAPEMIG, Brazil, no. APQ-04004-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Thiemy Sakai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethics committee of Bauru School of Dentistry, University of São Paulo, Brazil (protocol no. 88330218.6.0000.5417).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida-Junior, L.A., Marques, N.C.T., Prado, M.T. et al. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 34, 1917–1924 (2019). https://doi.org/10.1007/s10103-019-02836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02836-y

Keywords

Navigation