Skip to main content
Log in

Cold water immersion or LED therapy after training sessions: effects on exercise-induced muscle damage and performance in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Cryotherapy and phototherapy have been suggested as recovery methods due to their anti-inflammatory effects. They may also induce mitochondrial biogenesis, thus favoring endurance training adaptation. The aim of this study was to evaluate the anti-inflammatory and ergogenic effects of phototherapy or cold water immersion (CWI) applied daily after exercise in rats. Thirty-five rats were divided into five groups: control (CO), non-exercised (CE), passive recovery (PR), cold water immersion (CWI), and LED therapy (LED). The CO and CE groups were not submitted to training; however, the CE were submitted to an exhaustion test after the training period. Low-intensity swimming training (21 sessions, 45 min) was performed followed by passive recovery (PR), CWI (10 °C, 5 min), or infrared irradiation (940 nm, 4 J/cm2). Forty-eight hours after the final training session, the CE, PR, CWI, and LED animals were submitted to an exhaustion test. The animals were euthanized 24 h later and submitted to hematological, creatine kinase (CK), and C-reactive protein (PCR) analysis. Gastrocnemius and soleus muscles were submitted to histological analysis. No differences in blood cell counts, CK, and PCR were detected between groups. The CE group presented an increased number of areas with necrosis in the gastrocnemius and soleus muscles. The PR group presented the highest frequency of areas with edema and inflammation followed by CWI and LED groups. None of the recovery methods improved the performance in the exhaustion test. Successive applications of recovery methods do not improve exercise performance, but downmodulate the inflammation and prevent muscle necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bangsbo J (2015) Performance in sports--with specific emphasis on the effect of intensified training. Scand J Med Sci Sports 25(Suppl 4):88–99. https://doi.org/10.1111/sms.12605

    Article  PubMed  Google Scholar 

  2. Damas F, Nosaka K, Libardi CA, Chen TC, Ugrinowitsch C (2016) Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. Int J Sports Med 37:633–640. https://doi.org/10.1055/s-0042-100281

    Article  CAS  PubMed  Google Scholar 

  3. Peake JM, Neubauer O, Della Gatta PA, Nosaka K (2017) Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985) 122:559–570. https://doi.org/10.1152/japplphysiol.00971.2016

    Article  CAS  Google Scholar 

  4. Howatson G, Milak A (2009) Exercise-induced muscle damage following a bout of sport specific repeated sprints. J Strength Cond Res 23:2419–2424. https://doi.org/10.1519/JSC.0b013e3181bac52e

    Article  PubMed  Google Scholar 

  5. Fredsted A, Gissel H, Madsen K, Clausen T (2007) Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload? Am J Phys Regul Integr Comp Phys 292:R2249–R2258. https://doi.org/10.1152/ajpregu.00415.2006

    Article  CAS  Google Scholar 

  6. Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF, Toginho Filho Dde O, Ramos Sde P (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27:1051–1058. https://doi.org/10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  7. Mujika I (2010) Intense training: the key to optimal performance before and during the taper. Scand J Med Sci Sports 20(Suppl 2):24–31. https://doi.org/10.1111/j.1600-0838.2010.01189.x

    Article  PubMed  Google Scholar 

  8. Chazaud B (2016) Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol 94:140–145. https://doi.org/10.1038/icb.2015.97

    Article  CAS  PubMed  Google Scholar 

  9. Ihsan M, Watson G, Abbiss CR (2016) What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med 46:1095–1109. https://doi.org/10.1007/s40279-016-0483-3

    Article  PubMed  Google Scholar 

  10. da Costa Santos VB, de Paula Ramos S, Milanez VF, Correa JC, de Andrade Alves RI, Dias IF, Nakamura FY (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29:599–605. https://doi.org/10.1007/s10103-013-1371-9

    Article  PubMed  Google Scholar 

  11. Vieira A, Siqueira AF, Ferreira-Junior JB, do Carmo J, Durigan JL, Blazevich A, Bottaro M (2016) The effect of water temperature during cold-water immersion on recovery from exercise-induced muscle damage. Int J Sports Med 37:937–943. https://doi.org/10.1055/s-0042-111438

    Article  CAS  PubMed  Google Scholar 

  12. Rupp KA, Selkow NM, Parente WR, Ingersoll CD, Weltman AL, Saliba SA (2012) The effect of cold water immersion on 48-hour performance testing in collegiate soccer players. J Strength Cond Res 26:2043–2050. https://doi.org/10.1519/JSC.0b013e318239c3a1

    Article  PubMed  Google Scholar 

  13. Howatson G, Goodall S, van Someren KA (2009) The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol 105:615–621. https://doi.org/10.1007/s00421-008-0941-1

    Article  PubMed  Google Scholar 

  14. Goodall S, Howatson G (2008) The effects of multiple cold water immersions on indices of muscle damage. J Sports Sci Med 7:235–241

    PubMed  PubMed Central  Google Scholar 

  15. Lubkowska A, Dudzinska W, Bryczkowska I, Dolegowska B (2015) Body composition, lipid profile, adipokine concentration, and antioxidant capacity changes during interventions to treat overweight with exercise programme and whole-body cryostimulation. Oxidative Med Cell Longev 2015:803197. https://doi.org/10.1155/2015/803197

    Article  CAS  Google Scholar 

  16. Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, Hickey A, Cameron-Smith D, Abbiss CR (2015) Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Phys Regul Integr Comp Phys 309:R286–R294. https://doi.org/10.1152/ajpregu.00031.2015

    Article  CAS  Google Scholar 

  17. Joo CH, Allan R, Drust B, Close GL, Jeong TS, Bartlett JD, Mawhinney C, Louhelainen J, Morton JP, Gregson W (2016) Passive and post-exercise cold-water immersion augments PGC-1alpha and VEGF expression in human skeletal muscle. Eur J Appl Physiol 116:2315–2326. https://doi.org/10.1007/s00421-016-3480-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broatch JR, Petersen AC, Bishop DJ (2017) Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol:ajpregu 313:372–384. https://doi.org/10.1152/ajpregu.00434.2016

  19. Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, Sargent C, Lastella M, Hopkins WG, Martin DT (2014) Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc 46:1631–1639. https://doi.org/10.1249/MSS.0000000000000268

    Article  PubMed  Google Scholar 

  20. Aguiar PF, Magalhaes SM, Fonseca IA, da Costa Santos VB, de Matos MA, Peixoto MF, Nakamura FY, Crandall C, Araujo HN, Silveira LR, Rocha-Vieira E, de Castro Magalhaes F, Amorim FT (2016) Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers. Cell Stress Chaperones 21:793–804. https://doi.org/10.1007/s12192-016-0704-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62

    PubMed  PubMed Central  Google Scholar 

  22. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22. https://doi.org/10.1109/JSTQE.2016.2561201

  23. Masha RT, Houreld NN, Abrahamse H (2013) Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg 31:47–53. https://doi.org/10.1089/pho.2012.3369

    Article  CAS  PubMed  Google Scholar 

  24. Borges LS, Cerqueira MS, dos Santos Rocha JA, Conrado LA, Machado M, Pereira R, Pinto Neto O (2014) Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers Med Sci 29:1139–1144. https://doi.org/10.1007/s10103-013-1486-z

    Article  PubMed  Google Scholar 

  25. Nampo FK, Cavalheri V, Ramos Sde P, Camargo EA (2016) Effect of low-level phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis. Lasers Med Sci 31:165–177. https://doi.org/10.1007/s10103-015-1832-4

    Article  PubMed  Google Scholar 

  26. Nampo FK, Cavalheri V, Dos Santos Soares F, de Paula Ramos S, Camargo EA (2016) Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci 31:1957–1970. https://doi.org/10.1007/s10103-016-1977-9

    Article  PubMed  Google Scholar 

  27. Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflamm 2014:625048. https://doi.org/10.1155/2014/625048

    Article  CAS  Google Scholar 

  28. Buravlev EA, Zhidkova TV, Osipov AN, Vladimirov YA (2015) Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Lasers Med Sci 30:173–180. https://doi.org/10.1007/s10103-014-1639-8

    Article  PubMed  Google Scholar 

  29. da Costa Santos VB, Ruiz RJ, Vettorato ED, Nakamura FY, Juliani LC, Polito MD, Siqueira CP, de Paula Ramos S (2011) Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol 96:1228–1238. https://doi.org/10.1113/expphysiol.2011.060483

    Article  CAS  PubMed  Google Scholar 

  30. Dawson CA, Horvath SM (1970) Swimming in small laboratory animals. Med Sci Sports 2:51–78

    CAS  PubMed  Google Scholar 

  31. Carmo-Araujo EM, Dal-Pai-Silva M, Dal-Pai V, Cecchini R, Anjos Ferreira AL (2007) Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies. Int J Exp Pathol 88:147–154. https://doi.org/10.1111/j.1365-2613.2007.00526.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mawhinney C, Jones H, Joo CH, Low DA, Green DJ, Gregson W (2013) Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc 45:2277–2285. https://doi.org/10.1249/MSS.0b013e31829d8e2e

    Article  PubMed  Google Scholar 

  33. Lu H, Zhu L, Lian L, Chen M, Shi D, Wang K (2015) PGC-1alpha regulates the expression and activity of IRF-1. IUBMB Life 67:300–305. https://doi.org/10.1002/iub.1369

    Article  CAS  PubMed  Google Scholar 

  34. Eisele PS, Furrer R, Beer M, Handschin C (2015) The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochem Biophys Res Commun 464:692–697. https://doi.org/10.1016/j.bbrc.2015.06.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Freitas VH, Ramos SP, Bara-Filho MG, Freitas DG, Coimbra DR, Cecchini R, Guarnier FA, Nakamura FY (2017) Effect of cold water immersion performed on successive days on physical performance, muscle damage, and inflammatory, hormonal, and oxidative stress markers in volleyball players. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000001884

  36. Assis L, Moretti AI, Abrahao TB, Cury V, Souza HP, Hamblin MR, Parizotto NA (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44:726–735. https://doi.org/10.1002/lsm.22077

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314. https://doi.org/10.1002/lsm.20148

    Article  PubMed  Google Scholar 

  38. Buravlev EA, Zhidkova TV, Vladimirov YA, Osipov AN (2014) Effects of low-level laser therapy on mitochondrial respiration and nitrosyl complex content. Lasers Med Sci 29:1861–1866. https://doi.org/10.1007/s10103-014-1593-5

    Article  PubMed  Google Scholar 

  39. Alves AN, Fernandes KP, Deana AM, Bussadori SK, Mesquita-Ferrari RA (2014) Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 93:1073–1085. https://doi.org/10.1097/PHM.0000000000000158

    Article  PubMed  Google Scholar 

  40. Silveira PC, da Silva LA, Pinho CA, De Souza PS, Ronsani MM, Scheffer Dda L, Pinho RA (2013) Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 28:431–436. https://doi.org/10.1007/s10103-012-1075-6

    Article  PubMed  Google Scholar 

  41. Amadio EM, Serra AJ, Guaraldo SA, Silva JA Jr, Antonio EL, Silva F, Portes LA, Tucci PJ, Leal-Junior EC, de Carvalho Pde T (2015) The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-alpha proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci 30:1127–1134. https://doi.org/10.1007/s10103-015-1713-x

    Article  PubMed  Google Scholar 

  42. Fukuda TY, Tanji MM, Silva SR, Sato MN, Plapler H (2013) Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines. Lasers Med Sci 28:1305–1313. https://doi.org/10.1007/s10103-012-1231-z

    Article  PubMed  Google Scholar 

  43. Serafim KG, Ramos Sde P, de Lima FM, Carandina M, Ferrari O, Dias IF, Toginho Filho Dde O, Siqueira CP (2012) Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci 27:113–119. https://doi.org/10.1007/s10103-011-0923-0

    Article  PubMed  Google Scholar 

  44. Pigatto Mitihiro D, de Paula Ramos S, Corazza Montero J, Alves Campos A, de Oliveira Toginho Filho D, Dezan Garbelini CC (2017) Effects of near-infrared LED therapy on experimental tooth replantation in rats. Dent Traumatol 33:32–37. https://doi.org/10.1111/edt.12301

    Article  PubMed  Google Scholar 

  45. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680. https://doi.org/10.1111/j.1751-1097.2010.00732.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil, for the purchase of laboratory reagents and for the post-graduation grant for VBCS (grant no.1085489/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange de Paula Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were previously approved by the Ethics Committee on the Use of Animals of the Universidade Estadual de Londrina (protocol 077/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Santos, V.B., Correa, J.C.M., Chierotti, P. et al. Cold water immersion or LED therapy after training sessions: effects on exercise-induced muscle damage and performance in rats. Lasers Med Sci 34, 991–999 (2019). https://doi.org/10.1007/s10103-018-2689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2689-0

Keywords

Navigation