Skip to main content

Advertisement

Log in

Femtosecond laser settings for optimal bracket bonding to zirconia

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Bonding orthodontic brackets to ceramic materials is a challenging procedure; femtosecond (FS) laser conditioning could provide improved results, but the ideal settings for effective bracket-zirconia bonding have never been established. This study aimed to analyze the differences in surface roughness and shear bond strength (SBS) produced by different femtosecond laser settings and establish a protocol to prepare zirconia surfaces for optimal adhesion to metal orthodontic brackets. One hundred eighty zirconia samples were assigned to six groups according to surface treatment: (1) control; (2) air-particle abrasion (APA); (3) FS laser irradiation (300 mW output power, 60 μm inter-groove distance); (4) FS laser irradiation (200 mW, 100 μm); (5) FS laser irradiation (40 mW, 60 μm); and (6) FS laser irradiation (200 mW, 60 μm). Surface roughness was measured. Orthodontic brackets were bonded to the zirconia specimens, and SBS was measured. SBS in groups 3 and 6 was significantly higher than the other groups (5.92 ± 1.12 MPa and 5.68 ± 0.94 MPa). No significant differences were found between groups 1, 2, 4, and 5 (3.87 ± 0.77 MPa, 4.25 ± 0.51 MPa, 3.74 ± 0.10 MPa, and 3.91 ± 0.53 MPa). Surface roughness was significantly greater for FS laser than for control and APA groups (p = 1.28 × 10−8). FS laser at 200 mW, 60 μm can be recommended as the ideal settings for treating zirconia surfaces, producing good SBS and more economical energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Poosti M, Jahanbin A, Mahdavi P, Mehrnoush S (2012) Ceramic conditioning with Nd:YAG and Er:YAG laser for bracket bonding in orthodontics. Lasers Med Sci 27:321–324

    Article  PubMed  Google Scholar 

  2. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178

    Article  Google Scholar 

  3. Gomes AL, Oyagüe RC, Lynch CD, Montero J, Albaladejo A (2013) Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. J Dent 41:31–41

    Article  PubMed  CAS  Google Scholar 

  4. Mosharraf R, Rismanchian M, Savabi O, Ashtiani AH (2011) Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J Adv Prosthodont 3:221–228

    Article  PubMed  PubMed Central  Google Scholar 

  5. Spohr AM, Borges GA, Júnior LH, Mota EG, Oshima HM (2008) Surface modification of in-Ceram zirconia ceramic by Nd:YAG laser, Rocatec system, or aluminum oxide sandblasting and its bond strength to a resin cement. Photomed Laser Surg 26:203–208

    Article  PubMed  CAS  Google Scholar 

  6. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T (2013) Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 28:259–266

    Article  PubMed  Google Scholar 

  7. Cavalcanti A, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper Dent 34:280–328

    Article  PubMed  Google Scholar 

  8. Akin H, Ozkurt Z, Kımalı O, Kazazoglu E, Ozdemir (2011) Shear bond strength of resin cement to zirconia ceramic after aluminium oxide sandblasting and various laser treatments. Photomed Laser Surg 29:797–802

    Article  PubMed  CAS  Google Scholar 

  9. Paranhos MP, Burnett LH Jr, Magne P (2011) Effect of Nd:YAG laser and CO2 laser treatment on the resin bond strength to zirconia ceramic. Quintessence Int 42:79–89

    PubMed  Google Scholar 

  10. Gomes AL, Ramos JC, Santos-del Riego S, Montero J, Albaladejo A (2015) Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. Lasers Med Sci 30:787–795

    Article  PubMed  Google Scholar 

  11. Lorenzo MC, Portillo M, Moreno P, Montero J, Castillo-Oyagüe R, García A, Albaladejo A (2014) In vitro analysis of femtosecond laser as an alternative to acid etching for achieving suitable bond strength of brackets to human enamel. Lasers Med Sci 29:897–905

    Article  PubMed  CAS  Google Scholar 

  12. Lorenzo MC, Portillo M, Moreno P, Montero J, García A, Santos-del Riego SE, Albaladejo A (2015) Ultrashort pulsed laser conditioning of human enamel: in vitro study of the influence of geometrical processing parameters on shear bond strength of orthodontic brackets. Lasers Med Sci 30:891–900

    Article  PubMed  CAS  Google Scholar 

  13. Portillo M, Lorenzo MC, Moreno P, García A, Montero J, Ceballos L, Fuentes MV, Albaladejo A (2015) Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin. Lasers Med Sci 30:483–492

    Article  PubMed  CAS  Google Scholar 

  14. Vicente M, Gomes AL, Montero J, Rosel E, Seoane V, Albaladejo A (2016) Influence of cyclic loading on the adhesive effectiveness of resin-zirconia interface after femtosecond laser irradiation and conventional surface treatments. Lasers Surg Med 48:36–44

    Article  PubMed  Google Scholar 

  15. Moulton PF (1986) Spectroscopic and laser characteristics of Ti:Al2O3. J Opt Soc Am 3:125–133

    Article  CAS  Google Scholar 

  16. Varel H, Ashkenasi D, Rosenfeld A, Wähmer M, Campbell EEB (1997) Micromachining of quartz with ultrashort laser pulses. Appl Phys A65:367–373

    Article  Google Scholar 

  17. Armengol V, Jean A, Marion D (2000) Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod 26:138–141

    Article  PubMed  CAS  Google Scholar 

  18. Braun A, Krillke RF, Frentzen M, Bourauel C, Stark H, Schelle F (2015) Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system. Lasers Med Sci 30:475–481

    Article  PubMed  Google Scholar 

  19. Cavalcanti BN, Lage-Marques JL, Rode SM (2003) Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent 90:447–451

    Article  PubMed  Google Scholar 

  20. Akpinar YZ, Kepceoglu A, Yavuz T, Aslan MA, Demirtag Z, Kılıc HS, Usumez A (2015b) Effect of femtosecond laser beam angle on bond strength of zirconia-resin cement. Lasers Med Sci 30:2123–2128

    Article  PubMed  Google Scholar 

  21. Akpinar YZ, Irgin C, Yavuz T, Aslan MA, Kilic HS, Usumez A (2015a) Effect of femtosecond laser treatment on the shear bond strength of a metal bracket to prepared porcelain surface. Photomed Laser Surg 33:206–212

    Article  PubMed  CAS  Google Scholar 

  22. Erdur EA, Basciftci FA (2015) Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces. Lasers Surg Med 47:512–519

    Article  PubMed  Google Scholar 

  23. Tholt de Vasconcellos B, Miranda-Júnior WG, Prioli R, Thompson J, Oda M (2016) Surface roughness in ceramics with different finishing techniques using atomic force microscope and profilometer. Oper Dent 31:442–449

    Article  Google Scholar 

  24. Ersu B, Yuzugullu B, Ruya Yazici A, Canay S (2009) Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent 37:848–856

    Article  PubMed  CAS  Google Scholar 

  25. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85:333–340

    Article  PubMed  CAS  Google Scholar 

  26. Ahrari F, Heravi F, Hosseini M (2013) CO2 laser conditioning of porcelain surfaces for bonding metal orthodontic brackets. Lasers Med Sci 28:1091–1097

    Article  PubMed  Google Scholar 

  27. Brown WS, Dewey WA, Jacobs HR (1970) Thermal properties of teeth. J Dent Res 49:752–755

    Article  PubMed  CAS  Google Scholar 

  28. Kuo WC, Chang YH, Lin CL, Kuo JS (2011) Effects of different ceramic and dentin thicknesses on the temperature rise during photocuring. J Dent Sci 6:210–215

    Article  Google Scholar 

  29. Chong A, Wright LG, Wise FW (2015) Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep Prog Phys 78:113901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Malmström HS, McCormack SM, Fried D, Featherstone JD (2001) Effect of CO2 laser on pulpal temperature and surface morphology: an in vitro study. J Dent 29:521–529

    Article  PubMed  Google Scholar 

  31. Fiedler S et al. (2001) Machining of biocompatible ceramics with femtosecond laser pulses. Biomed Tech (Berl) 58(Suppl.1)

  32. Vicente Prieto M, Gomes ALC, Montero Martín J, Alvarado Lorenzo A, Seoane Mato V, Albaladejo Martínez A (2016) The effect of femtosecond laser treatment on the effectiveness of resin-zirconia adhesive: an in vitro study. J Lasers Med Sci 7:214–219

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kara O, Kara HB, Tobi ES, Ozturk AN, Kilic HS (2015) Effect of various lasers on the bond strength of two zirconia ceramics. Photomed Laser Surg 33:69–76

    Article  PubMed  CAS  Google Scholar 

  34. García-Sanz V, Paredes-Gallardo V, Mendoza-Yero O, Carbonell-Leal M, Albaladejo A, Montiel-Company JM, Bellot-Arcís C (2018) The effects of lasers on bond strength to ceramic materials: a systematic review and meta-analysis. PLoS One 13:e0190736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Çağlar İ, Yanıkoğlu N (2016) The effect of sandblasting, Er:YAG laser, and heat treatment on the mechanical properties of different zirconia cores. Photomed Laser Surg 34:17–26

    Article  PubMed  CAS  Google Scholar 

  36. Erdu EA, Basciftci FA (2015) Effect of Ti:sapphire-femtosecond laser on the surface roughness of ceramics. Lasers Surg Med 47:833–838

    Article  Google Scholar 

  37. Smith GA, McInnes-Ledoux P, Ledoux WR, Weinberg R (1998) Orthodontic bonding to porcelain-bond strength and refinishing. Am J Orthod Dentofac Orthop 94:245–252

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Serveis Centrals d’Instrumentació Científica (SCIC) of the University Jaume I for the use of the femtosecond laser and microscopy facilities.

The authors thank William James Packer, professional English language editor, for translating the manuscript.

Funding

The present research received financial support from the Generalitat Valenciana through the project PROMETEU/2016/079, the Ministerio de Economía y Competitividad (MINECO) through the project FIS2016-75618-R, and the Ministry of Education Youth and Sports of the Czech Republic through project no. LM2015073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Paredes-Gallardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any procedures involving human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Sanz, V., Paredes-Gallardo, V., Bellot-Arcís, C. et al. Femtosecond laser settings for optimal bracket bonding to zirconia. Lasers Med Sci 34, 297–304 (2019). https://doi.org/10.1007/s10103-018-2589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2589-3

Keywords

Navigation