Skip to main content

Advertisement

Log in

Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Har-Shai Y et al (2006) Intralesional cryosurgery enhances the involution of recalcitrant auricular keloids: a new clinical approach supported by experimental studies. Wound Repair Regen 14(1):18–27

    Article  PubMed  Google Scholar 

  2. Hosnuter M et al (2007) The effects of onion extract on hypertrophic and keloid scars. J Wound Care 16(6):251–254

    Article  CAS  PubMed  Google Scholar 

  3. Jacob SE et al (2003) Topical application of imiquimod 5% cream to keloids alters expression genes associated with apoptosis. Br J Dermatol 149(Suppl 66):62–65

    Article  CAS  PubMed  Google Scholar 

  4. Gold MH et al (2014) Updated international clinical recommendations on scar management: part 2—algorithms for scar prevention and treatment. Dermatol Surg 40(8):825–831

    CAS  PubMed  Google Scholar 

  5. Allendorff J, Riegel W, Kohler H (1997) Regression of retroperitoneal fibrosis by combination therapy with tamoxifen and steroids. Med Klin (Munich) 92(7):439–443

    Article  CAS  Google Scholar 

  6. Jones CD et al (2015) The use of chemotherapeutics for the treatment of keloid scars. Dermatol Reports 7(2):5880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nakashima M et al (2010) A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet 42(9):768

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa R et al (2014) Associations between keloid severity and single-nucleotide polymorphisms: importance of rs8032158 as a biomarker of keloid severity. J Investig Dermatol 134(7):2041–2043

    Article  CAS  PubMed  Google Scholar 

  9. Berman B, Maderal A, Raphael B (2017) Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol Surg 43(Suppl 1):S3–s18

    Article  CAS  PubMed  Google Scholar 

  10. Bagabir R et al (2012) Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol 167(5):1053–1066

    Article  CAS  PubMed  Google Scholar 

  11. Arima J et al (2015) Hypertension: a systemic key to understanding local keloid severity. Wound Repair Regen 23(2):213–221

    Article  PubMed  Google Scholar 

  12. Huang C, Ogawa R (2014) The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis? Wound Repair Regen 22(4):462–466

    Article  CAS  PubMed  Google Scholar 

  13. López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131

    Article  CAS  PubMed  Google Scholar 

  15. Yan C et al (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. Am J Pathol 176(5):2247–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80(1):41–50

    Article  PubMed  Google Scholar 

  17. Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5(8):1145

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J et al (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7(345):ra91

    Article  PubMed  CAS  Google Scholar 

  19. Hahn JM et al (2016) Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma 4(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  20. Syed F, Bayat A (2012) Notch signaling pathway in keloid disease: enhanced fibroblast activity in a Jagged-1 peptide-dependent manner in lesional vs. extralesional fibroblasts. Wound Repair Regen 20(5):688–706

    Article  PubMed  Google Scholar 

  21. Ingrid E et al (2013) Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 6:1249

    Google Scholar 

  22. Matsuno Y et al (2012) Notch signaling mediates TGF-beta1-induced epithelial-mesenchymal transition through the induction of Snai1. Int J Biochem Cell Biol 44(5):776–789

    Article  CAS  PubMed  Google Scholar 

  23. Zhou J et al (2016) Notch and TGFbeta form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal 28(8):838–849

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y et al (2017) Notch signaling mediated by TGF-beta/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol 23(13):2330–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Ogawa R (2012) Fibroproliferative disorders and their mechanobiology. Connect Tissue Res 53(3):187–196

    Article  CAS  PubMed  Google Scholar 

  26. Kalodimou VE (2016) Isolation of mesenchymal stem cells for the treatment of lung fibrosis in an animal model. J Tissue Sci Eng 7:2(Suppl). https://doi.org/10.4172/2157-7552.C1.024

  27. Lee MJ et al (2010) Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl4-injured liver: potential application to the treatment of hepatic diseases. J Cell Biochem 111(6):1453

    Article  CAS  PubMed  Google Scholar 

  28. Leung VYL et al (2014) Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair. Stem Cells 32(8):2164–2177

    Article  CAS  PubMed  Google Scholar 

  29. Ojeh N et al (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16(10):25476–25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spiekman M et al (2014) Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion. Plast Reconstr Surg 134(4):699

    Article  CAS  PubMed  Google Scholar 

  31. Uysal CA et al (2014) The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Adv Wound Care 3(6):405–413

    Article  Google Scholar 

  32. Zhang Q et al (2015) Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 6(1):145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zonari A et al (2015) Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomater 17:170

    Article  CAS  PubMed  Google Scholar 

  34. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33(4):183

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gaida K et al (2004) Low level laser therapy—a conservative approach to the burn scar? Burns 30(4):362

    Article  PubMed  Google Scholar 

  36. Huang YY et al (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):358

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev 7(4):869–882

    Article  CAS  Google Scholar 

  38. Galvão BCA et al (2014) Low-level laser irradiation inducesin vitroproliferation of mesenchymal stem cells. Einstein 12(1):75

    Article  Google Scholar 

  39. Kushibiki T et al (2015) Low reactive level laser therapy for mesenchymal stromal cells therapies. Stem Cells Int 2015(6):974864

    PubMed  PubMed Central  Google Scholar 

  40. Park IS, Chung PS, Ahn JC (2014) Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials 35(34):9280–9289

    Article  CAS  PubMed  Google Scholar 

  41. Mvula B, Moore TJ, Abrahamse H (2010) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39

    Article  CAS  PubMed  Google Scholar 

  42. Shen CC et al (2013) Low-level laser stimulation on adipose-tissue-derived stem cell treatments for focal cerebral ischemia in rats. Evid Based Complement Alternat Med 2013:594906

    PubMed  PubMed Central  Google Scholar 

  43. Min KH et al (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthet Plast Surg 39(5):778–782

    Article  Google Scholar 

  44. Wang Y et al (2016) Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta 1861(2):441

    Article  PubMed Central  CAS  Google Scholar 

  45. Constantin A et al (2017) CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules. Lasers Med Sci 32(1):117–127

    Article  PubMed  Google Scholar 

  46. Mvula B, Abrahamse H (2016) Differentiation potential of adipose-derived stem cells when cocultured with smooth muscle cells, and the role of low-intensity laser irradiation. Photomed Laser Surg 34(11):509–515

    Article  CAS  PubMed  Google Scholar 

  47. Mvula B et al (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282

    Article  CAS  PubMed  Google Scholar 

  48. Rittié L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83

    PubMed  Google Scholar 

  49. Gaur M, Dobke M, Lunyak VV (2017) Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci 18(1):208. https://doi.org/10.3390/ijms18010208

  50. Xu X et al (2014) Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and beta-catenin signaling. Cell Biosci 4:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wick G et al (2013) The immunology of fibrosis. Annu Rev Immunol 31:107–135

    Article  CAS  PubMed  Google Scholar 

  52. MacDonald EM, Cohn RD (2012) TGFbeta signaling: its role in fibrosis formation and myopathies. Curr Opin Rheumatol 24(6):628–634

    Article  CAS  PubMed  Google Scholar 

  53. Aoyagi-Ikeda K et al (2011) Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol 45(1):136–144

    CAS  PubMed  Google Scholar 

  54. Luo K (2017) Signaling cross talk between TGF-beta/Smad and other signaling pathways. Cold Spring Harb Perspect Biol 9(1). https://doi.org/10.1101/cshperspect.a022137

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincai Fan.

Ethics declarations

Ethical approval and patient consent received.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Fan, J., Liu, L. et al. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci 34, 1–10 (2019). https://doi.org/10.1007/s10103-018-2567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2567-9

Keywords

Navigation