Skip to main content

Advertisement

Log in

Selective removal of carious lesion with Er:YAG laser followed by dentin biomodification with chitosan

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of Er:YAG laser for selective removal of carious lesion, followed by biomodification with chitosan gel where the subsurface microhardness, chemical composition, and morphological changes of the residual caries-affected dentin were examined. Artificial dentinal lesions were created by pH-cycling method (14 days) in 104 bovine specimens (5 × 5 mm). Specimens were randomly divided according to the carious removal method: bur (low-speed handpiece) or Er:YAG laser (250 mJ/4 Hz). Specimens were treated with 35% phosphoric acid and were subdivided into two groups according to dentin biomodification: without chitosan (control) and 2.5% chitosan. Forty specimens were restored with an adhesive system and composite resin. Subsurface microhardness tests were performed in sound dentin, caries-affected dentin, residual caries-affected dentin, and after the restoration. The other 64 specimens were subjected to SEM-EDS atomic analysis. Data were statistically analyzed (p < 0.05). After the Er:YAG laser excavation, the microhardness value of residual caries-affected dentin was higher (p < 0.05) than bur-treated dentin. A significant decrease in the amount of Ca, P, and Ca/P ratio was found after the removal of carious lesions with Er:YAG laser (p < 0.05). The biomodification with chitosan did not influence the microhardness and atomic percentage of Ca, P, and Ca/P ratio of residual caries-affected dentin (p > 0.05). SEM analysis showed morphological changes on residual caries-affected dentin (p > 0.05). The selective removal of carious dentin with Er:YAG laser increased microhardness of residual caries-affected dentin, changing its surface morphology and chemical composition. The biomodification with chitosan did not influence the structural and chemical composition of residual caries-affected dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kidd EA (2004) How ‘clean’ must a cavity be before restoration? Caries Res 38:305–313

    Article  CAS  PubMed  Google Scholar 

  2. Thompson V, Craig RG, Curro FA, Green WS, Ship JA (2008) Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc 139:705–712

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwendicke F, Paris S, Tu YK (2015) Effects of using different criteria for caries removal: a systematic review and network meta-analysis. J Dent 43:1–15

    Article  PubMed  Google Scholar 

  4. Dommisch H, Peus K, Kneist S, Krause F, Braun A, Hedderich J, Jepsen S, Eberhard J (2008) Fluorescence-controlled Er:YAG laser for caries removal in permanent teeth: a randomized clinical trial. Eur J Oral Sci 116:170–176

    Article  PubMed  Google Scholar 

  5. Schwass DR, Leichter JW, Purton DG, Swain MV (2013) Evaluating the efficiency of caries removal using an Er:YAG laser driven by fluorescence feedback control. Arch Oral Biol 58:603–610

    Article  PubMed  Google Scholar 

  6. Krause F, Braun A, Lotz G, Kneist S, Jepsen S, Eberhard J (2008) Evaluation of selective caries removal in deciduous teeth by a fluorescence feedback-controlled Er:YAG laser in vivo. Clin Oral Investig 12:209–215

    Article  PubMed  Google Scholar 

  7. Valerio RA, Borsatto MC, Serra MC, Polizeli SA, Nemezio MA, Galo R, Aires CP, Dos Santos AC, Corona SA (2016) Caries removal in deciduous teeth using an Er:YAG laser: a randomized split-mouth clinical trial. Clin Oral Investig 20:65–73

    Article  PubMed  Google Scholar 

  8. Merigo E, Fornaini C, Clini F, Fontana M, Cella L, Oppici A (2015) Er:YAG laser dentistry in special needs patients. Laser Ther 24:189–193

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fornaini C, Riceputi D, Lupi-Pegurier L, Rocca JP (2012) Patient responses to Er:YAG laser when used for conservative dentistry. Lasers Med Sci 27:1143–1149

    Article  PubMed  Google Scholar 

  10. Paghdiwala AF (1991) Does the laser work on hard dental tissue? J Am Dent Assoc 122:79–80

    CAS  PubMed  Google Scholar 

  11. Raucci-Neto W, Raquel Dos Santos C, Augusto de Lima F, Pecora JD, Bachmann L, Palma-Dibb RG (2015) Thermal effects and morphological aspects of varying Er:YAG laser energy on demineralized dentin removal: an in vitro study. Lasers Med Sci 30:1231–1236

    Article  PubMed  Google Scholar 

  12. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med 9:338–344

    Article  CAS  PubMed  Google Scholar 

  13. Moosavi H, Ghorbanzadeh S, Ahrari F (2016) Structural and morphological changes in human dentin after ablative and subablative Er:YAG laser irradiation. J Lasers Med Sci 7:86–91

    Article  PubMed  PubMed Central  Google Scholar 

  14. Contreras-Arriaga B, Rodriguez-Vilchis LE, Contreras-Bulnes R, Olea-Mejia OF, Scougall-Vilchis RJ, Centeno-Pedraza C (2015) Chemical and morphological changes in human dentin after Er:YAGlaser irradiation: EDS and SEM analysis. Microsc Res Tech 78:1019–1025

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki KM, Aoki A, Masuno H, Ichinose S, Yamada S, Ishikawa I (2002) Compositional analysis of root cementum and dentin after Er:YAG laser irradiation compared with CO2 lased and intact roots using Fourier transformed infrared spectroscopy. J Periodontal Res 37:50–59

    Article  CAS  PubMed  Google Scholar 

  16. Aranha AC, De Paula EC, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er,Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70:745–751

    Article  PubMed  Google Scholar 

  17. Schein MT, Bocangel JS, Nogueira GE, Schein PA (2003) SEM evaluation of the interaction pattern between dentin and resin after cavity preparation using ER:YAG laser. J Dent 31:127–135

    Article  PubMed  Google Scholar 

  18. Neves Ade A, Coutinho E, Cardoso MV, de Munck J, Van Meerbeek B (2011) Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques. Dent Mater 27:552–562

    Article  PubMed  Google Scholar 

  19. Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25:441–458

    Article  CAS  PubMed  Google Scholar 

  20. Perdigao J (2010) Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 26:e24–e37

    Article  PubMed  Google Scholar 

  21. Finger WJ, Balkenhol M (2000) Rewetting strategies for bonding to dry dentin with an acetone-based adhesive. J Adhes Dent 2:51–56

    CAS  PubMed  Google Scholar 

  22. Xu Z, Neoh KG, Lin CC, Kishen A (2011) Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater 98:150–159

    Article  PubMed  Google Scholar 

  23. Profeta AC, Mannocci F, Foxton RM, Thompson I, Watson TF, Sauro S (2012) Bioactive effects of a calcium/sodium phosphosilicate on the resin-dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study. Eur J Oral Sci 120:353–362

    Article  CAS  PubMed  Google Scholar 

  24. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Beng LT, Neo J (2013) Chitosan/riboflavin-modified demineralized dentin as a potential substrate for bonding. J Mech Behav Biomed Mater 17:278–289

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Cao S, Wang H, Li Y, Kishen A, Deng X, Yang X, Wang Y, Cong C, Wang H, Zhang X (2015) Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS One 10:e0116553

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21:330

    Article  PubMed  Google Scholar 

  27. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nieto-Suarez M, Lopez-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183

    Article  CAS  PubMed  Google Scholar 

  29. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Z, Cao S, Wang H, Li Y, Kishen A, Deng X, Yang X, Wang Y, Cong C, Wang H, Zhang X (2015) Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS One 10:e0116553

  31. Silva PV, Guedes DF, Pecora JD, da Cruz-Filho AM (2012) Time-dependent effects of chitosan on dentin structures. Braz Dent J 23:357–361

    Article  PubMed  Google Scholar 

  32. Sano H, Shibasaki K, Matsukubo T, Takaesu Y (2001) Effect of rinsing with phosphorylated chitosan on four-day plaque regrowth. Bull Tokyo Dent Coll 42:251–256

    Article  CAS  PubMed  Google Scholar 

  33. Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MA, Puppin-Rontani RM, Correr-Sobrinho L (2008) Radiodensity and hardness ofenamel and dentin of human and bovine teeth, varyingbovine teeth age. Arch Oral Biol 53:1023–1029

    Article  CAS  PubMed  Google Scholar 

  34. Soares FZ, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO (2016) Bovine tooth is a substitute for human tooth on bond strength studies: a systematic review and meta-analysis of in vitro studies. Dent Mater 32:1385–1393

    Article  CAS  PubMed  Google Scholar 

  35. Souza-Gabriel AE, Chinelatti MA, Pecora JD, Palma-Dibb RG, Corona SA (2009) Dentin microhardness and subsurface morphology after Er:YAGlaser cavity preparation using different parameters. J Dent Child (Chic) 76:58–66

    Google Scholar 

  36. Marquezan M, Correa FN, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, Mendes (2009) Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol 54:1111–1117

    Article  PubMed  Google Scholar 

  37. Marchesan MA, Brugnera-Junior A, Souza-Gabriel AE, Correa-Silva SR, Sousa-Neto MD (2008) Ultrastructural analysis of root canal dentine irradiated with 980-nm diode laser energy at different parameters. Photomed Laser Surg 26:235–240

    Article  PubMed  Google Scholar 

  38. Sakoolnamarka R, Burrow MF, Swain M, Tyas MJ (2005) Microhardness and Ca:P ratio of carious and Carisolv treated caries-dentine using an ultra-micro indentation system energy dispersive analysis of x-rays—a pilot study. Aust Dent J 50:246–250

    Article  CAS  PubMed  Google Scholar 

  39. Pashley D, Okabe A, Parham P (1985) The relationship between dentin microhardness and tubule density. Endod Dent Traumatol 1:176–179

    Article  CAS  PubMed  Google Scholar 

  40. Arends J, ten Bosch JJ (1992) Demineralization and remineralization evaluation techniques. J Dent Res 71:924–928

    PubMed  Google Scholar 

  41. Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr, Weihs TP (1996) Hardness and Young’s modulus of human peritubular and intertubular dentine. Arch Oral Biol 41:9–13

    Article  CAS  PubMed  Google Scholar 

  42. Corona SAM, Souza AE, Chinelatti MA, Pecora JD, Borsatto MC, Palma Dibb RG (2007) Effect of energy and pulse repetition rate of Er:YAG laser on dentin ablation ability and morphological analysis of the laser-irradiated substrate. Photomed Laser Surg 25:26–36

    Article  PubMed  Google Scholar 

  43. Furtado Messias DC, Souza-Gabriel AE, Palma-Dibb RG, Rodrigues AL Jr, Serra MC (2006) Efficiency and effectiveness of Er:YAG laser on carious tissue removal. JOLA 6:181–186

    Google Scholar 

  44. Katirci G, Ermis RB (2016) Microindentation hardness and calcium/phosphorus ratio of dentin following excavation of dental caries lesions with different techniques. Spring 5:1641

    Article  Google Scholar 

  45. Chinelatti MA, Rocha CT, Colucci V, Serra MC, Rodrigues-Júnior AL, Corona SA (2017) Effect of Er:Yag laser on dentin demineralization around restorations. Lasers Med Sci. doi:10.1007/s10103-016-2136-z

  46. Rohanizadeh R, LeGeros RZ, Fan D, Jean A, Daculsi G (1999) Ultrastructural properties of laser-irradiated and heat-treated dentin. J Dent Res 78:1829–1835

    Article  CAS  PubMed  Google Scholar 

  47. Sezer AD, Cevher E, Hatipoglu F, Ogurtan Z, Bas AL, Akbuga J (2008) Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull 31:2326–2333

    Article  CAS  PubMed  Google Scholar 

  48. Jiang T, James R, Kumbar SG, Laurencin CT (2014) Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and synthetic biomedical polymers. Elsevier, Burlington, pp 91–113

    Chapter  Google Scholar 

  49. Perchyonok VT, Grobler SR, Zhang S (2014) IPNs from cyclodextrin: chitosan antioxidants: bonding, bio-adhesion, antioxidant capacity and drug release. J Funct Biomater 5:183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teruel Jde D, Alcolea A, Hernández A, Ruiz AJ (2015) Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol 60:768–775

    Article  PubMed  Google Scholar 

  51. Melo MA, Lima JP, Passos VF, Rodrigues LK (2015) The influence of dentin demineralization on morphological features of cavities using Er:YAG laser. Photomed Laser Surg 33:22–28

  52. Arnaud TM, de Barros NB, Diniz FB (2010) Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent 38:848–852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the São Paulo Research Foundation (FAPESP) for the scholarship awarded (grant no. 2014/23654-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana A. Curylofo-Zotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by São Paulo Research Foundation (FAPESP—grant no. 2014/23654-9).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curylofo-Zotti, F.A., Tanta, G.S., Zucoloto, M.L. et al. Selective removal of carious lesion with Er:YAG laser followed by dentin biomodification with chitosan. Lasers Med Sci 32, 1595–1603 (2017). https://doi.org/10.1007/s10103-017-2287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2287-6

Keywords

Navigation