Skip to main content

Advertisement

Log in

Review: in vivo optical spectral tissue sensing—how to go from research to routine clinical application?

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Innovations in optical spectroscopy have helped the technology reach a point where performance previously seen only in laboratory settings can be translated and tested in real-world applications. In the field of oncology, spectral tissue sensing (STS) by means of optical spectroscopy is considered to have major potential for improving diagnostics and optimizing treatment outcome. The concept has been investigated for more than two decades and yet spectral tissue sensing is not commonly employed in routine medical practice. It is therefore important to understand what is needed to translate technological advances and insights generated through basic scientific research in this field into clinical practice. The aim of the discussion presented here is not to provide a comprehensive review of all work published over the last decades but rather to highlight some of the challenges found in literature and encountered by our group in the quest to translate optical technologies into useful clinical tools. Furthermore, an outlook is proposed on how translational researchers could proceed to eventually have STS incorporated in the process of clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005. doi:10.1117/1.2337546

    Article  PubMed  Google Scholar 

  2. Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N (2009) Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res 69(7):2919–2926. doi:10.1158/0008-5472.CAN-08-3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13(2):024012. doi:10.1117/1.2909672

    Article  PubMed  Google Scholar 

  4. Evers DJ, Nachabe R, Vranken Peeters MJ, van der Hage JA, Oldenburg HS, Rutgers EJ, Lucassen GW, Hendriks BH, Wesseling J, Ruers TJ (2013) Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Res Treat 137(1):155–165. doi:10.1007/s10549-012-2350-8

    Article  CAS  PubMed  Google Scholar 

  5. Evers DJ, Nachabe R, Hompes D, van Coevorden F, Lucassen GW, Hendriks BH, van Velthuysen ML, Wesseling J, Ruers TJ (2013) Optical sensing for tumor detection in the liver. Eur J Surg Oncol 39(1):68–75. doi:10.1016/j.ejso.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  6. Zonios G, Dimou A, Carrara M, Marchesini R (2010) In vivo optical properties of melanocytic skin lesions: common nevi, dysplastic nevi and malignant melanoma. Photochem Photobiol 86(1):236–240. doi:10.1111/j.1751-1097.2009.00630.x

    Article  CAS  PubMed  Google Scholar 

  7. Rajaram N, Reichenberg JS, Migden MR, Nguyen TH, Tunnell JW (2010) Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Lasers Surg Med 42(10):716–727. doi:10.1002/lsm.21009

    Article  PubMed  PubMed Central  Google Scholar 

  8. A’Amar OM, Liou L, Rodriguez-Diaz E, Delas Morenas A, Bigio IJ (2013) Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med Sci 28(5):1323–1329. doi:10.1007/s10103-012-1245-6

    Article  PubMed  Google Scholar 

  9. Chang VT, Bean SM, Cartwright PS, Ramanujam N (2010) Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix. J Biomed Opt 15(5):057006. doi:10.1117/1.3495730

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bard MP, Amelink A, Skurichina M, Noordhoek Hegt V, Duin RP, Sterenborg HJ, Hoogsteden HC, Aerts JG (2006) Optical spectroscopy for the classification of malignant lesions of the bronchial tree. Chest 129(4):995–1001. doi:10.1378/chest.129.4.995

    Article  PubMed  Google Scholar 

  11. Bigio IJ, Bown SG (2004) Spectroscopic sensing of cancer and cancer therapy. Cancer Biol Ther 3(3):259–267

    Article  CAS  PubMed  Google Scholar 

  12. Hanney SR, Castle-Clarke S, Grant J, Guthrie S, Henshall C, Mestre-Ferrandiz J, Pistollato M, Pollitt A, Sussex J, Wooding S (2015) How long does biomedical research take? Studying the time taken between biomedical and health research and its translation into products, policy, and practice. Health Res Policy Syst 13:1. doi:10.1186/1478-4505-13-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Westfall JM, Mold J, Fagnan L (2007) Practice-based research—“Blue Highways” on the NIH roadmap. JAMA 297(4):403–406. doi:10.1001/jama.297.4.403

    Article  CAS  PubMed  Google Scholar 

  14. Ioannidis JPA (2006) Evolution and translation of research findings: from bench to where? PLoS Clin Trials 1(7):e36. doi:10.1371/journal.pctr.0010036

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vale NB, Delfino J, Vale LF (2005) Serendipity in medicine and anesthesiology. Rev Bras Anestesiol 55(2):224–249

    Article  PubMed  Google Scholar 

  16. Crowley WF (2003) Translation of basic research into useful treatments: how often does it occur? Am J Med 114:503–505. doi:10.1016/S0002-9343(03)00119-0

    Article  PubMed  Google Scholar 

  17. Fernandez-Moure JS (2016) Lost in translation: the gap in scientific advancements and clinical application. Front Bioeng Biotechnol 4. doi:10.3389/fbioe.2016.00043

  18. Rousche P, Schneeweis DM, Perreault EJ, Jensen W (2008) Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain. J Neural Eng 5(1):16–20. doi:10.1088/1741-2560/5/1/P02

    Article  Google Scholar 

  19. Wagstaff A (2014) Five steps to putting innovation at the heart of cancer care. Cancer World 58:8

    Google Scholar 

  20. Peters NHGM, van Esser S, van den Bosch MAAJ, Storm RK, Plaisier PW, van Dalen T, Diepstraten SCE, Weits R, Westenend PJ, Stapper G, Fernandez-Gallardo MA, Borel Rinkes IHM, van Hillegersberg R, Mali WPTM, Peeters PHM (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET – randomised controlled trial. Eur J Cancer 47:879–886

    Article  CAS  PubMed  Google Scholar 

  21. Fudge N, Sadler E, Fisher HR, Maher J, Wolfe CDA, McKevitt C (2016) Optimising translational research opportunities: a systematic review and narrative synthesis of basic and clinician scientists’ perspectives of factors which enable or hinder translational research. PLoS One 11(8):e0160475. doi:10.1371/journal.pone.0160475

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meslin EM, Blasimme A, Cambon-Thomsen A (2013) Mapping the translational science policy ‘valley of death’. Clin Transl Med 2(14). doi:10.1186/2001-1326-2-14

  23. Wagner PD, Sirvastava S (2012) New paradigms in translational science research in cancer biomarkers. Transl Res 159(4):343–353. doi:10.1016/j.trsl.2012.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ioannidis JPA (2004) Materializing research promises: opportunities, priorities and conflicts in translational medicine. J Transl Med 2(5)

  25. Madry H, Alini M, Stoddart MJ, Evans C, Miclau T, Steiner S (2014) Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols. Eur Cell Mater 27:17–21, discussion 21

    Article  CAS  PubMed  Google Scholar 

  26. Johnston SC, Hauser SL, Desmond-Hellmann S (2011) Enhancing ties between academia and industry to improve health. Nat Med 17(4):434–436

    Article  CAS  PubMed  Google Scholar 

  27. Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N (2002) Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med 30:191–200. doi:10.1002/lsm.10026

    Article  PubMed  Google Scholar 

  28. Spliethoff JW, Prevoo W, Meier MA, de Jong J, Evers DJ, Sterenborg HJ, Lucassen GW, Hendriks BH, Ruers TJ (2015) Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study. Clin Cancer Res. doi:10.1158/1078-0432.ccr-15-0807

    PubMed  Google Scholar 

  29. Lin W-C, Toms SA, Jansen D, Mahadevan-Jansen A (2001) Intraoperative application of optical spectroscopy in the presence of blood. IEEE J Sel Top Quantum Electron 7(6):996–1003

    Article  CAS  Google Scholar 

  30. Fitzmaurice M (2000) Principles and pitfalls of diagnostic test development: implications for spectroscopic tissue diagnosis. J Biomed Opt 5(2):119–130. doi:10.1117/1.429978

    Article  CAS  PubMed  Google Scholar 

  31. De Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN (2004) Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J Biomed Opt 9(5):940–950. doi:10.1117/1.1782611]

    Article  PubMed  Google Scholar 

  32. Rodriguez-Diaz E, Bigio IJ, Singh SK (2011) Integrated optical tools for minimally invasive diagnosis and treatment at gastrointestinal endoscopy. Robot Comput Integr Manuf 27(2):249–256. doi:10.1016/j.rcim.2010.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez-Diaz E, Huang Q, Cerda SR, O’Brien MJ, Bigio IJ, Singh SK (2014) Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy. Gastrointest Endosc. doi:10.1016/j.gie.2014.07.012

    PubMed  Google Scholar 

  34. Kuiper T, Alderlieste YA, Tytgat KM, Vlug MS, Nabuurs JA, Bastiaansen BA, Lowenberg M, Fockens P, Dekker E (2015) Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy 47(1):56–62. doi:10.1055/s-0034-1378112

    PubMed  Google Scholar 

  35. Chen LH, Ho H, Lazaro R, Thng CH, Yuen J, Ng WS, Cheng C (2010) Optimum slicing of radical prostatectomy specimens for correlation between histopathology and medical images. Int J Comput Assist Radiol Surg 5(5):471–487. doi:10.1007/s11548-010-0405-z

    Article  PubMed  Google Scholar 

  36. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334. doi:10.1038/nrc3261

    Article  CAS  PubMed  Google Scholar 

  37. Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ (2004) Spatial variations in optical and physiological properties of healthy breast tissue. J Biomed Opt 9(3):534–540. doi:10.1117/1.1695560

    Article  PubMed  Google Scholar 

  38. Gabrecht T, Lovisa B, van den Bergh H, Wagnieres G (2009) Autofluorescence bronchoscopy: quantification of inter-patient variations of fluorescence intensity. Lasers Med Sci 24(1):45–51. doi:10.1007/s10103-007-0518-y

    Article  PubMed  Google Scholar 

  39. Kennedy S, Geradts J, Bydlon T, Brown JQ, Gallagher J, Junker M, Barry W, Ramanujam N, Wilke L (2010) Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Res 12(6):R91. doi:10.1186/bcr2770

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Sullivan TD, Leproux A, Chen J, Bahri S, Matlock A, Roblyer D, McLaren CE, Chen W, Cerussi AE, Su M, Tromberg BJ (2013) Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Res 15(R14)

  41. Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Srinivasan S, Song X, Tosteson TD, Poplack SP, Paulsen KD (2004) Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 9(3):541–552. doi:10.1117/1.1691028

    Article  CAS  PubMed  Google Scholar 

  42. Taroni P, Pifferi A, Quarto G, Spinelli L, Torricelli A, Abbate F, Balestreri N, Ganino S, Menna S, Cassano E, Cubeddu R (2012) Effects of tissue heterogeneity on the optical estimate of breast density. Biomed Opt Express 3(10):2411–2418. doi:10.1364/boe.3.002411

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laughney AM, Krishnaswamy V, Rizzo EJ, Schwab MC, Barth RJ, Pogue BW, Paulsen KD, Wells WA (2012) Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment. Clin Cancer Res 18(22):6315–6325. doi:10.1158/1078-0432.ccr-12-0136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spliethoff JW, De Boer LL, Meier MA, Prevoo W, De Jong J, Bydlon TM, Sterenborg HJCM, Burgers JA, Hendriks BHW, Ruers TJM (2016) Spectral sensing for tissue diagnosis during lung biopsy procedures: the importance of an adequate internal reference and real-time feedback. Lung Cancer 98:62–68. doi:10.1016/j.lungcan.2016.05.019

    Article  PubMed  Google Scholar 

  45. Svensson T, Andersson-Engels S, Einarsdóttír M, Svanberg K (2007) In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J Biomed Opt 12(1):014022. doi:10.1117/1.2435175

    Article  PubMed  Google Scholar 

  46. Nyst HJ, Van Veen RLP, Tan IB, Peters R, Spaniol S, Robinson DJ, Stewart FA, Levendag PC, Sterenborg HJCM (2007) Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasophareyngeal carcinoma: phantom and volunteer experiments. Lasers Surg Med 39:647–653. doi:10.1002/lsm.20536

    Article  CAS  PubMed  Google Scholar 

  47. Nachabe R, Hendriks BH, Schierling R, Hales J, Racadio JM, Rottenberg S, Ruers TJ, Babic D, Racadio JM (2015) Real-time in vivo characterization of primary liver tumors with diffuse optical spectroscopy during percutaneous needle interventions: feasibility study in Woodchucks. Investig Radiol 50(7):443–448. doi:10.1097/rli.0000000000000149

    Article  Google Scholar 

  48. Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N (2006) Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. Lasers Surg Med 38(7):714–724. doi:10.1002/lsm.20356

    Article  PubMed  Google Scholar 

  49. Laughney AM, Krishnaswamy V, Garcia-Allende PB, Conde OM, Wells WA, Paulsen KD, Pogue BW (2010) Automated classification of breast pathology using local measures of broadband reflectance. J Biomed Opt 15(6):066019–066011–066019–066016. doi:10.1117/1.3516594

    Article  Google Scholar 

  50. Farrell TJ, Wilson BC, Patterson MS (1992) The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements. Phys Med Biol 37(12):2281–2286

    Article  CAS  PubMed  Google Scholar 

  51. Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG, Saunders C (2000) Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 5(2):221–228

    Article  CAS  PubMed  Google Scholar 

  52. Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429–2437. doi:10.1093/bioinformatics/bth267

    Article  CAS  PubMed  Google Scholar 

  53. Hsu H-H (2006) Advanced data mining technologies in bioinformatics. Idea Group Pub

  54. Balog J, Szaniszlo T, Schaefer KC, Denes J, Lopata A, Godorhazy L, Szalay D, Balogh L, Sasi-Szabo L, Toth M, Takats Z (2010) Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem 82(17):7343–7350. doi:10.1021/ac101283x

    Article  CAS  PubMed  Google Scholar 

  55. Palmer GM, Ramanujam N (2006) Monte Carlo-based inverse model for calculating tissue optical properties. Part I: theory and validation on sythetic phantoms. Appl Opt 45(5):1062–1071. doi:10.1364/AO.45.001062

    Article  PubMed  Google Scholar 

  56. Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg B (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005–044001–044005–044016. doi:10.1117/1.2337546

    Article  Google Scholar 

  57. Zonios G, Dimou A (2009) Light scattering spectroscopy of human skin in vivo. Opt Express 17(3):1256–1267

    Article  CAS  PubMed  Google Scholar 

  58. Nachabé R, Evers DJ, Hendriks BHW, Lucassen GW, Van der Voort M, Wesseling J, Ruers TJM (2011) Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples. Biomed Opt Express 2(3):600–614

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Boer LL, Molenkamp BG, Bydlon TM, Hendriks BHW, Wesseling J, Sterenborg HJCM, Ruers TJM (2015) Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries. Breast Cancer Res Treat 152(3):509–518. doi:10.1007/s10549-015-3487-z

    Article  PubMed  Google Scholar 

  60. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3:1–10. doi:10.1038/nrc1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisanne L. de Boer.

Ethics declarations

Conflict of interest

There are no conflicts of interests to declare.

Role of funding source

In this research was no involvement of funding sources.

Ethical approval/Informed consent

This research did not involve patients

Additional information

Lisanne L. de Boer and Jarich W. Spliethoff contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Boer, L.L., Spliethoff, J.W., Sterenborg, H.J.C.M. et al. Review: in vivo optical spectral tissue sensing—how to go from research to routine clinical application?. Lasers Med Sci 32, 711–719 (2017). https://doi.org/10.1007/s10103-016-2119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2119-0

Keywords

Navigation