Skip to main content
Log in

Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Aging is responsible by a series of morphological and functional modifications that lead to a decline of muscle function, particularly in females. Muscle tissue in elderly people is more susceptible to fatigue and, consequently, to an increased inability to maintain strength and motor control. In this context, therapeutic approaches able of attenuating muscle fatigue have been investigated. Among these, the photobiomodulation demonstrate positive results to interacts with biological tissues, promoting the increase in cell energy production. Thus, the aim of this study was to investigate the effects of photobiomodulation (808 nm, 250 J/cm2, 100 mW, 7 J each point) in the fatigue level and muscle performance in elderly women. Thirty subjects entered a crossover randomized double-blinded placebo-controlled trial. Photobiomodulation was delivered on the rectus femoris muscle of the dominant limb immediately before the fatigue protocol. In both sessions, peripheral muscle fatigue was analyzed by surface electromyography (EMG) and blood lactate analysis. Muscle performance was evaluated using an isokinetic dynamometer. The results showed that photobiomodulation was able of reducing muscle fatigue by a significant increase of electromyographic fatigue index (EFI) (p = 0.047) and decreasing significantly lactate concentration 6 min after the performance of the fatigue protocol (p = 0. 0006) compared the placebo laser session. However, the photobiomodulation was not able of increasing muscle performance measured by the isokinetic dynamometer. Thus, it can be conclude that the photobiomodulation was effective in reducing fatigue levels. However, no effects of photobiomodulation on muscle performance was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clark BC, Manini TM (2010) Functional consequences of sarcopenia and dynapenia in the elderly. Curr Opin Clin Nutr Metab Care 13(3):271–276. doi:10.1097/MCO.0b013e328337819e

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barton M (2014) Aging and endothelin: determinants of disease. Life Sci 118(2):97–109. doi:10.1016/j.lfs.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  3. Gault ML, Willems ME (2013) Aging, functional capacity and eccentric exercise training. Aging Dis 4(6):351–363. doi:10.14336/AD.2013.0400351

    Article  PubMed Central  PubMed  Google Scholar 

  4. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326

    CAS  PubMed  Google Scholar 

  5. Thompson LV (2002) Skeletal muscle adaptations with age, inactivity, and therapeutic exercise. J Orthop Sports Phys Ther 32(2):44–57

    Article  PubMed  Google Scholar 

  6. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67(1):28–40. doi:10.1093/gerona/glr010

    Article  PubMed  Google Scholar 

  7. Arazi H, Damirchi A, Asadi A (2013) Age-related hormonal adaptations, muscle circumference and strength development with 8 weeks moderate intensity resistance training. Ann Endocrinol (Paris) 74(1):30–35. doi:10.1016/j.ando.2012.11.004

    Article  CAS  Google Scholar 

  8. Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25

    Article  CAS  PubMed  Google Scholar 

  9. de Rekeneire N, Leo-Summers L, Han L, Gill TM (2014) Epidemiology of restricting fatigue in older adults: the precipitating events project. J Am Geriatr Soc 62(3):476–481. doi:10.1111/jgs.12685

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kent-Braun JA (2009) Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev 37(1):3–9. doi:10.1097/JES.0b013e318190ea2e

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pasquet B, Carpentier A, Duchateau J, Hainaut K (2000) Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 23:1727–1735

    Article  CAS  PubMed  Google Scholar 

  12. Rahnama N, Lees A, Reilly T (2006) Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J Electromyogr Kinesiol 16:257–263

    Article  PubMed  Google Scholar 

  13. Barnet A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796

    Article  Google Scholar 

  14. Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1(4):267–286

    Article  PubMed Central  PubMed  Google Scholar 

  15. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  16. Toma RL, Tucci HT, Antunes HK, Pedroni CR, de Oliveira AS, Buck I, Ferreira PD, Vassão PG, Renno AC (2013) Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med Sci 28(5):1375–1382. doi:10.1007/s10103-012-1246-5

    Article  PubMed  Google Scholar 

  17. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361

    Article  CAS  PubMed  Google Scholar 

  18. Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610. doi:10.1002/iub.359

    Article  CAS  PubMed  Google Scholar 

  19. Ferraresi C, Parizotto NA, Pires de Sousa MV, Kaippert B, Huang YY, Koiso T, Bagnato VS, Hamblin MR (2014) Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J Biophotonics 6:9999. doi:10.1002/jbio.201400087

    Google Scholar 

  20. Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho PT, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66. doi:10.1007/s10103-014-1616-2

    Article  PubMed  Google Scholar 

  21. Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30(4):1259–1267. doi:10.1007/s10103-015-1723-8

    Article  PubMed  Google Scholar 

  22. Bakeeva LE, Manteĭfel’ VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27(3):608–617, Russian

    CAS  Google Scholar 

  23. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  24. Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi:10.1007/s10103-011-0984-0

    Article  PubMed  Google Scholar 

  25. Dos Reis FA, da Silva BA, Laraia EM, de Melo RM, Silva PH, Leal-Junior EC, de Carvalho PT (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32(2):106–112. doi:10.1089/pho.2013.3617

    Article  PubMed  Google Scholar 

  26. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi:10.1007/s00421-009-1321-117

    Article  PubMed  Google Scholar 

  27. Ruiter CJ, Korte A, Schreven S, Haan A (2010) Leg dominancy in relation to fast isometric torque production and squat jump height. Eur J Appl Physiol 108:247–255

    Article  PubMed Central  PubMed  Google Scholar 

  28. Higashi RH, Toma RL, Tucci HT, Pedroni CR, Ferreira PD, Baldini G, Aveiro MC, Borghi-Silva A, de Oliveira AS, Renno AC (2013) Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg 31(12):586–594. doi:10.1089/pho.2012.3388

    Article  CAS  PubMed  Google Scholar 

  29. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  30. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, URL http://www.R-project.org

    Google Scholar 

  31. dos Santos Maciel T, Muñoz IS, Nicolau RA, Nogueira DV, Hauck LA, Osório RA, de Paula Júnior AR (2014) Phototherapy effect on the muscular activity of regular physical activity practitioners. Lasers Med Sci 29(3):1145–1152. doi:10.1007/s10103-013-1481-4

    Article  PubMed  Google Scholar 

  32. Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi:10.1007/s00421-010-1562-z

    Article  PubMed  Google Scholar 

  33. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36(4):307–314

    Article  PubMed  Google Scholar 

  34. Paolillo FR, Corazza AV, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2013) Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers Med Sci 28(2):415–422. doi:10.1007/s10103-012-1062-y

    Article  PubMed  Google Scholar 

  35. Place N, Yamada T, Bruton JD, Westerblad H (2010) Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol 110(1):1–15. doi:10.1007/s00421-010-1480-0

    Article  PubMed  Google Scholar 

  36. de Brito Vieira WH, Bezerra RM, Queiroz RA, Maciel NF, Parizotto NA, Ferraresi C (2014) Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomed Laser Surg 32(12):678–685. doi:10.1089/pho.2014.3812

    Article  PubMed  Google Scholar 

  37. Paolillo FR, Milan JC, Aniceto IV, Barreto SG, Rebelatto JR, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2011) Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomed Laser Surg 29(9):639–645. doi:10.1089/pho.2010.2961

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mariane Stanev, Ph.D. from the Comparative Literature Department, University of Michigan, and the research subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Vassão.

Ethics declarations

All procedures were approved by the Ethics Committee of the Federal University of São Paulo (approval number 528.166) and registered at ClinicalTrials.gov (RBR-28mjwb). All participants were informed about the purpose and procedures of the study and signed an informed consent declaration before their participation in the experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassão, P.G., Toma, R.L., Antunes, H.K.M. et al. Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation. Lasers Med Sci 31, 275–282 (2016). https://doi.org/10.1007/s10103-015-1858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1858-7

Keywords

Navigation