Skip to main content
Log in

Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In the classical model of edema formation and hyperalgesia induced by carrageenan administration in rat paw, the increase in prostaglandin E2 (PGE2) production in the central nervous system (CNS) contributes to the severity of the inflammatory and pain responses. Prostaglandins are generated by the cyclooxygenase (COX). There are two distinct COX isoforms, COX-1 and COX-2. In inflammatory tissues, COX-2 is greatly expressed producing proinflammatory prostaglandins (PGs). Low-level laser therapy (LLLT) has been used in the treatment of inflammatory pathologies, reducing both pain and acute inflammatory process. Herein we studied the effect of LLLT on both COX-2 and COX-1 messenger RNA (mRNA) expression in either subplantar or brain tissues taken from rats treated with carrageenan. The experiment was designed as follows: A1 (saline), A2 (carrageenan—0.5 mg/paw), A3 (carrageenan—0.5 mg/paw + LLLT), A4 (carrageenan—1.0 mg/paw), and A5 (carrageenan—1.0 mg/paw + LLLT). Animals from the A3 and A5 groups were irradiated at 1 h after carrageenan administration, using a diode laser with an output power of 30 mW and a wavelength of 660 nm. The laser beam covered an area of 0.785 cm2, resulting in an energy dosage of 7.5 J/cm2. Both COX-2 and COX-1 mRNAs were measured by RT-PCR. Six hours after carrageenan administration, COX-2 mRNA expression was significantly increased both in the subplantar (2.2–4.1-fold) and total brain (8.65–13.79-fold) tissues. COX-1 mRNA expression was not changed. LLLT (7.5 J/cm2) reduced significantly the COX-2 mRNA expression both in the subplantar (~2.5-fold) and brain (4.84–9.67-fold) tissues. The results show that LLLT is able to reduce COX-2 mRNA expression. It is possible that the mechanism of LLLT decreasing hyperalgesia is also related to its effect in reducing the COX-2 expression in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ibuki T, Matsumura K, Yamazaki Y, Nozaki T, Tanaka Y, Kobayashi S (2003) Cyclooxygenase-2 is induced in the endothelial cells throughout the central nervous system during carrageenan-induced hind paw inflammation; its possible role in hyperalgesia. J Neurochem 86(2):318–328

    Article  CAS  PubMed  Google Scholar 

  2. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226

    CAS  PubMed  Google Scholar 

  3. Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11(2):81s–110s

    PubMed  Google Scholar 

  4. Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, Wilson CB, Hwang D (1993) Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys 307(2):361–368

    Article  CAS  PubMed  Google Scholar 

  5. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Ann Rev Pharmacol Toxicol 38:97–120

    Article  CAS  Google Scholar 

  6. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475

    Article  CAS  PubMed  Google Scholar 

  7. Masferrer JL, Seibert K, Zweifel B, Needleman P (1992) Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A 89(9):3917–3921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A 89(16):7384–7388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ichitani Y, Shi T, Haeggstrom JZ, Samuelsson B, Hökfelt T (1997) Increased levels of cyclooxygenase-2 mRNA in the rat spinal cord after peripheral inflammation: an in situ hybridization study. Neuroreport 8:2949–2952

    Article  CAS  PubMed  Google Scholar 

  10. Schuligoi R, Ulcar R, Peskar BA, Amann R (2003) Effect of endotoxin treatment on the expression of cyclooxygenase-2 and prostaglandin synthases in spinal cord, dorsal root ganglia, and skin of rats. Neuroscience 116(4):1043–1052

    Article  CAS  PubMed  Google Scholar 

  11. Grill M, Heinemann A, Hoefler G, Peskar BA, Schuligoi R (2008) Effect of endotoxin treatment on the expression and localization of spinal cyclooxygenase, prostaglandin synthases, and PGD2 receptors. J Neurochem 104(5):1345–1357

    Article  CAS  PubMed  Google Scholar 

  12. Grill M, Peskar BA, Schuligoi R, Amann R (2006) Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 50(2):165–173

    Article  CAS  PubMed  Google Scholar 

  13. Daher JB, Tonussi CR (2003) A spinal mechanism for the peripheral anti-inflammatory action of indomethacin. Brain Res 962:207–212

    Article  CAS  PubMed  Google Scholar 

  14. Hosoi M, Oka T, Hori T (1997) Prostaglandin E receptor EP3 subtype is involved in thermal hyperalgesia through its actions in the preoptic hypothalamus and the diagonal band of Broca in rats. Pain 71(3):303–311

    Article  CAS  PubMed  Google Scholar 

  15. Narita M, Shimamura M, Imai S, Kubota C, Yajima Y, Takagi T, Shiokawa M, Inoue T, Suzuki M, Suzuki T (2008) Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice. Neuroscience 152(2):477–486

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi M, Martucci C, Ferrario P, Franchi S, Sacerdote P (2007) Increased tumor necrosis factor-alpha and prostaglandin E2 concentrations in the cerebrospinal fluid of rats with inflammatory hyperalgesia: the effects of analgesic drugs. Anesth Analg 104(4):949–954

    Article  CAS  PubMed  Google Scholar 

  17. Walker JB (1983) Relief from chronic pain by low power laser irradiation. Neurosci Lett 43:339–344

    Article  CAS  PubMed  Google Scholar 

  18. Ribas ES, Paiva WS, Pinto NC, Yeng LT, Okada M, Fonoff ET, Chavantes MC, Teixeira MJ (2012) Use of low intensity laser treatment in neuropathic pain refractory to clinical treatment in amputation stumps. Int J Gen Med 5:739–742

    PubMed Central  PubMed  Google Scholar 

  19. Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381

    Article  PubMed  Google Scholar 

  20. Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T (2008) Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg 107(3):1058–1063

    Article  CAS  PubMed  Google Scholar 

  21. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802

    Article  PubMed  Google Scholar 

  22. Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS (2007) COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 56(6):228–229

    Article  CAS  PubMed  Google Scholar 

  23. Xavier M, de Souza RA, Pires VA, Santos AP, Aimbire F, Silva JA Jr, Albertini R, Villaverde AB (2014) Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats. Lasers Med Sci 29(1):85–90

    Article  PubMed  Google Scholar 

  24. de Lima FM, Vitoretti L, Coelho F, Albertini R, Breithaupt-Faloppa AC, de Lima WT, Aimbire F (2013) Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 28(2):551–564

    Article  PubMed  Google Scholar 

  25. Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40:76–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fukuda TY, Tanji MM, Silva SR, Sato MN, Plapler H (2013) Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines. Lasers Med Sci 28(5):1305–1313

    Article  PubMed  Google Scholar 

  27. Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7):614–621

    Article  PubMed  Google Scholar 

  28. Assis L, Moretti AI, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44(9):726–735

    Article  PubMed Central  PubMed  Google Scholar 

  29. de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Albuquerque-Pontes GM, Santos LA, Vanin AA, Frigo L, Vieira RP, Albertini R, de Tarso Camillo de Carvalho P, Leal-Junior EC (2013) Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem Photobiol 89(2):501–507

    Article  PubMed  Google Scholar 

  30. Marcos RL, Leal-Junior EC, Arnold G, Magnenet V, Rahouadj R, Wang X, Demeurie F, Magdalou J, de Carvalho MH, Lopes-Martins RÁ (2012) Low-level laser therapy in collagenase-induced Achilles tendinitis in rats: analyses of biochemical and biomechanical aspects. J Orthop Res 30(12):1945–1951

    Article  CAS  PubMed  Google Scholar 

  31. Pires D, Xavier M, Araújo T, Silva JA Jr, Aimbire F, Albertini R (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26(1):85–94

    Article  PubMed  Google Scholar 

  32. Arganaraz GA, Silva JA Jr, Perosa SR, Pessoa LG, Carvalho FF, Bascands JL, Bader M, da Silva TE, Amado D, Cavalheiro EA, Pesquero JB, da Graça N-MM (2004) The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Brain Res 23:114–125

    Article  Google Scholar 

  33. Guay J, Bateman K, Gordon R, Mancini J, Riendeau D (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J Biol Chem 279(23):24866–24872

    Article  CAS  PubMed  Google Scholar 

  34. Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser M, Guay J, Kargman S, Léger S, Mancini JA, O'Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Chan CC et al (1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol 121(1):105–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Francischi JN, Chaves CT, Moura AC, Lima AS, Rocha OA, Ferreira-Alves DL, Bakhle YS (2002) Selective inhibitors of cyclo-oxygenase-2 (COX-2) induce hypoalgesia in a rat paw model of inflammation. Br J Pharmacol 137(6):837–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D (2011) Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-κB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J 25(8):2782–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yaksh TL, Dirig DM, Conway CM, Svensson C, Luo ZD, Isakson PC (2001) The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci 21(16):5847–5853

    CAS  PubMed  Google Scholar 

  38. Dolan S, Hastie P, Crossan C, Nolan AM (2011) Co-induction of cyclooxygenase-2 [correction of cyclooxyenase-2] and early growth response gene (Egr-1) in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Mol Pain 7:91–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lenz H, Raeder J, Draegni T, Heyerdahl F, Schmelz M, Stubhaug A (2011) Effects of COX inhibition on experimental pain and hyperalgesia during and after remifentanil infusion in humans. Pain 152(6):1289–1297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPESP and CNPq for the grants under which this research was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricilia Silva Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prianti, A.C.G., Silva, J.A., dos Santos, R.F. et al. Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29, 1397–1403 (2014). https://doi.org/10.1007/s10103-014-1543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1543-2

Keywords

Navigation