Skip to main content

Advertisement

Log in

Effect of Nd:YAG laser parameters on the penetration depth of a representative Ni–Cr dental casting alloy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effects of voltage and laser beam (spot) diameter on the penetration depth during laser beam welding in a representative nickel–chromium (Ni–Cr) dental alloy were the subject of this study. The cast alloy specimens were butted against each other and laser welded at their interface using various voltages (160–390 V) and spot diameters (0.2–1.8 mm) and a constant pulse duration of 10 ms. After welding, the laser beam penetration depths in the alloy were measured. The results were plotted and were statistically analyzed with a two-way ANOVA, employing voltage and spot diameter as the discriminating variables and using Holm–Sidak post hoc method (a = 0.05). The maximum penetration depth was 4.7 mm. The penetration depth increased as the spot diameter decreased at a fixed voltage and increased as the voltage increased at a fixed spot diameter. Varying the parameters of voltage and laser spot diameter significantly affected the depth of penetration of the dental cast Ni–Cr alloy. The penetration depth of laser-welded Ni–Cr dental alloys can be accurately adjusted based on the aforementioned results, leading to successfully joined/repaired dental restorations, saving manufacturing time, reducing final cost, and enhancing the longevity of dental prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watanabe I, Liu J, Atsuta M (2001) Effects of heat treatments on mechanical strength of laser-welded equi-atomic AuCu-6at%Ga alloy. J Den Res 80:1813–1817

    Article  CAS  Google Scholar 

  2. Rocha R, Pinheiro AL, Villaverde AB (2006) Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding. Braz Dent J 17:20–23

    PubMed  Google Scholar 

  3. Wang RR, Welsch GE (1995) Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing. J Proshet Dent 74:521–530

    Article  CAS  Google Scholar 

  4. Srimaneepong V, Yoneyama T, Kobayashi E et al (2005) Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings. Dent Mater J 24:541–549

    Article  CAS  PubMed  Google Scholar 

  5. Wang SH, Wei MD, Tsay LW (2003) Tensile properties of LBW welds in Ti-6Al-4V alloy at evaluated temperatures below 450 °C. Mater Lett 57:1815–1823

    Article  CAS  Google Scholar 

  6. NaBadalung DP, Nicholls JI (1998) Laser welding of a cobalt-chromium removable partial denture alloy. J Proshet Dent 79:285–290

    Article  CAS  Google Scholar 

  7. Sjogren G, Andersson M, Bergman M (1988) Laser welding of titanium in dentistry. Acta Odontol Scan 46:247–253

    Article  CAS  Google Scholar 

  8. Liu J, Watanabe I, Yoshida K et al (2002) Joint strength of laser-welded titanium. Dent Mater 18:143–148

    Article  CAS  PubMed  Google Scholar 

  9. Akman E, Demir A, Canel T et al (2009) Laser welding of Ti6Al4V titanium alloys. J Mater Proc Tech 209:3705–3713

    Article  CAS  Google Scholar 

  10. Baba N, Watanabe I (2005) Penetration depth into dental casting alloys by Nd:YAG laser. J Biomed Mater Res B 72:64–68

    Article  CAS  Google Scholar 

  11. Watanabe I, Topham DS (2006) Laser welding of cast titanium and dental alloys using argon shielding. J Prosthodont 15:102–107

    Article  PubMed  Google Scholar 

  12. Bertrand C, Poulon-Quintin A (2011) Effect of temporal pulse shaping on the reduction of laser weld defects in a Pd-Ag-Sn dental alloy. Dent Mater 27:e43–50

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Zhao S, Wang B, et al. (2011) The mechanical properties of nickel-chromium alloy welded by Nd:YAG laser apparatus in dentistry. In: 2011 International conference on human health and biomedical engineering, Jilin

  14. Anselm Wiskott HW, Doumas T, Scherrer SS et al (2001) Mechanical and structural characteristics of commercially pure grade 2 Ti welds and solder joints. J Mater Sci-Mater M 12:719–725

    Article  CAS  Google Scholar 

  15. Berg E, Wagnere WC, Davik G et al (1995) Mechanical properties of laser-welded cast and wrought titanium. J Proshet Dent 74:250–257

    Article  CAS  Google Scholar 

  16. Roggensack M, Walter MH, Boning KW (1993) Studies on laser- and plasma-welded titanium. Dent Mater 9:104–107

    Article  CAS  PubMed  Google Scholar 

  17. Yamagishi T, Ito M, Fujimura Y (1993) Mechanical properties of laser welds of titanium in dentistry by pulsed Nd:YAG laser apparatus. J Proshet Dent 70:264–273

    Article  CAS  Google Scholar 

  18. Chai T, Chou CK (1998) Mechanical properties of laser-welded cast titanium joints under different conditions. J Proshet Dent 79:477–483

    Article  CAS  Google Scholar 

  19. Wang RR, Chang CT (1998) Thermal modeling of laser welding for titanium dental restorations. J Proshet Dent 79:335–341

    Article  CAS  Google Scholar 

  20. Watanabe I, McBride M, Newton P et al (2009) Laser surface treatment to improve mechanical properties of cast titanium. Dent Mater 25:629–633

    Article  CAS  PubMed  Google Scholar 

  21. Takayama Y, Nomoto R, Nakajima H et al (2011) Comparison of joint designs for laser welding of cast metal plates and wrought wires. Odontology. doi:10.1007/s10266-011-0049-7

    Google Scholar 

  22. Srimaneepong V, Yoneyama T, Kobayashi E et al (2008) Comparative study on torsional strength, ductility and fracture characteristics of laser-welded alpha + beta Ti-6Al-7Nb alloy, CP titanium and Co-Cr alloy dental castings. Dent Mater 24:839–845

    Article  CAS  PubMed  Google Scholar 

  23. Richter K, Behr W, Reisgen U (2007) Low heat welding of titanium materials with a pulsed Nd:YAG laser. Materialwiss Werkst 38:51–56

    Article  CAS  Google Scholar 

  24. Nunez-Pantoja JM, Vaz LG, Nobilo MA et al (2011) Effects of laser-weld joint opening size on fatigue strength of Ti-6Al-4V structures with several diameters. J Oral Rehabil 38:196–201

    Article  CAS  PubMed  Google Scholar 

  25. Perret O, Bizouard M, Naudy P et al (2001) Characterization of the keyhole formed during pulsed Nd–YAG laser interaction with a Ti–6Al–4V metallic target. J Appl Phys 90:27–30

    Article  CAS  Google Scholar 

  26. Cao X, Jahazi M (2009) Effect of welding speed on butt joint quality of Ti–6Al–4 V alloy welded using a high-power Nd:YAG laser. Opt Laser Eng 47:1231–1241

    Article  Google Scholar 

  27. Squillace A, Prisco U, Ciliberto S et al (2012) Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints. J Mat Proc Tech 212:427–436

    Article  CAS  Google Scholar 

  28. Reclaru L, Susz C, Ardelean L (2010) Laser beam welding. Timisoara Med J 60:86–89

    Google Scholar 

  29. Huling JS, Clark RE (1977) Compratative distortion in three-unit fixed prostheses joined by laser welding, conventioanl soldering, or casting in one piece. J Dent Res 56:128–134

    Article  CAS  PubMed  Google Scholar 

  30. Wiskott HW, Macheret F, Bussy F et al (1997) Mechanical and elemental characterization of solder joints and welds using a gold-palladium alloy. J Proshet Dent 77:607–616

    Article  CAS  Google Scholar 

  31. Smith DL, Burnett AP, Gordon TE Jr (1972) Laser welding of gold alloys. J Dent Res 51:161–167

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe I, Liu J, Baba N et al (2004) Optimizing mechanical properties of laser-welded gold alloy through heat treatment. Dent Mater 20:630–634

    Article  CAS  PubMed  Google Scholar 

  33. Bertrand C, Le Petitcorps Y, Albingre L et al (2001) The laser welding technique applied to the non precious dental alloys procedure and results. Brit Dent J 190:255–257

    CAS  PubMed  Google Scholar 

  34. Baba N, Watanabe I, Liu J et al (2004) Mechanical strength of laser-welded cobalt-chromium alloy. J Biomed Mater Res B 69:121–124

    Article  CAS  Google Scholar 

  35. Zupancic R, Legat A, Funduk N (2006) Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints. J Proshet Dent 96:273–282

    Article  CAS  Google Scholar 

  36. Fornaini C, Passaretti F, Villa E et al (2011) Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser. Laser Med Sci 26:415–420

    Article  Google Scholar 

  37. Tzeng YF (2000) Parametric analysis of the pulsed Nd:YAG laser seam welding process. J Mat Proc Tech 102:40–47

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Group Program for funding this research project. This study was funded by a research grant (# RGP-VPP-206) from the Research Group Program, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef S. Al Jabbari.

Additional information

Dedication

The paper is dedicated to the memory of Dimitris Mountoudis CDT, a dear friend of the third and last authors, who passed away suddenly at a young age in August 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Jabbari, Y.S., Koutsoukis, T., Barmpagadaki, X. et al. Effect of Nd:YAG laser parameters on the penetration depth of a representative Ni–Cr dental casting alloy. Lasers Med Sci 30, 909–914 (2015). https://doi.org/10.1007/s10103-013-1502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1502-3

Keywords

Navigation