Skip to main content

Advertisement

Log in

Influence of laser light on bioimplants used in otorhinolaryngology

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In otorhinolaryngology, dermatology and reconstructive surgery biomaterials as implants and a variety of lasers are used. Laser light applied near to an implant could have the risk to damage these materials. Therefore, their resistance exposed to laser light is of interest. A diode laser emitting at 940 nm and a CO2 laser were used to investigate its effects to the biomaterials Bioverit®, Medpor® and Palacos®, and in addition, an excised implant containing Medpor® and nasal turbinate tissue, excised and fixed in formalin. The macro- and microscopic changes of the material, temperature development during laser energy application in dependency to distance of fibre and material, time of exposure and applied power were investigated. Interaction of diode laser light with Bioverit® (0 mm distance, 360 s, 10 W, 3,600 J) resulted in minimal microscopic effects in direct contact of with the fibre. Using Medpor® (1 mm, 10s, 10 W, 100 J) resulted in melting and perforation. In the case of Palacos® (0.6 mm, 10s, 10 W, 100 J), melting occurred creating a flat excavation. The effect to Medpor® in nasal turbinate (1–2 mm, 10s, 10 W, 100 J) showed tissue denaturation and carbonisation and creation of a hole. The interaction of the CO2 laser with Bioverit® (3 cm, 0.5, 1 and 5 s, 2, 10 or 20 W) induced melting and discolouring resulting finally in a perforating hole. Depending on the material, first damage starts 10 s after an impact of 100 J (threshold value). So interaction between laser energy and biomaterials occurs. This should be carefully considered during clinical laser treatments especially nearby implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Binyamin G, Shafi BM, Mery CM (2006) Biomaterials: a primer for surgeons. Semin Pediatr Surg 15(4):276–283

    Article  PubMed  Google Scholar 

  2. Royo J, Urdiales F, Moreno J, Al-Zarouni M, Cornejo P, Trelles MA (2011) Six-month follow-up multicenter prospective study of 368 patients, phototypes III to V, on epilation efficacy using an 810-nm diode laser at low fluence. Lasers Med Sci 26(2):247–255

    Article  PubMed  Google Scholar 

  3. Astner S (2009) Clinical applicability of a 1,450-nm diode laser as adjunctive treatment for refractory acne. G Ital Dermatol Venereol 144(6):629–638

    CAS  PubMed  Google Scholar 

  4. Yukna RA (2011) Lasers in periodontal therapy. Todays FDA 23(3):40–41

    PubMed  Google Scholar 

  5. Havel M, Sroka R, Englert E, Stelter K, Leunig A, Betz CS (2012) Intraindividual comparison of 1,470 nm diode laser versus carbon dioxide laser for tonsillotomy: a prospective, randomized, double blind, controlled feasibility trial. Lasers Surg Med 44(7):558–563

    Article  PubMed  Google Scholar 

  6. Havel M, Sroka R, Leunig A, Patel P, Betz CS (2011) A double-blind, randomized, intra-individual controlled feasibility trial comparing the use of 1,470 and 940 nm diode laser for the treatment of hyperplastic inferior nasal turbinates. Lasers Surg Med 43(9):881–886

    Article  PubMed  Google Scholar 

  7. Shamsaldeen O, Peterson JD, Goldman MP (2011) The adverse events of deep fractional CO(2): a retrospective study of 490 treatments in 374 patients. Lasers Surg Med 43(6):453–456

    Article  PubMed  Google Scholar 

  8. PK Chu and X Liu Edt (2000) Solid Free-Form Techniques, Selective Laser Sintering (SLS) using CO2 Laser. Biomaterials Fabrication and Processing Handbook. CRC Press, Boca Raton, p 24–25

  9. Sultan B, Byrne PJ (2011) Custom-made, 3D, intraoperative surgical guides for nasal reconstruction. Facial Plast Surg Clin North Am 19(4):647–653

    Article  PubMed  Google Scholar 

  10. Remacle M, Jouzdani E, Lawson G, Jamart J (2002) Laser-assisted surgery addressing snoring long-term outcome comparing CO2 laser vs. CO2 laser combined with diode laser. Acta Otorhinolaryngol Belg 56(2):177–182

    CAS  PubMed  Google Scholar 

  11. Kollenberg W (2009) Technische Keramik, Vulkanverlag, page 306

  12. Sevin K, Askar I, Saray A, et al.(2000) Exposure of high-density porous polyethylene (medpor) used for contour restoration and treatment. Br J Oral Maxillofac Surg 38:44–9000

    Google Scholar 

  13. Kuen KD, Ege W, Gopp U (2005) Acrylic Bone Cement: Composition and Properties. Ortho Clinics of North America 36:18–285

  14. Youn JI, Telenkov SA, Kim E, Bhavaraju NC, Wong BJ, Valvano JW, Milner TE (2000) Optical and thermal properties of nasal septal cartilage. Lasers Surg Med 27(2):119–28

    Google Scholar 

  15. Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJ, van Gemert MJ (1997) In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Phys Med Biol. 42(11):2255-61

    Google Scholar 

  16. Duck FA. (1990) Physical Properties of Tissue - A comprehensive reference book Academic Press London San Diego - ISBN 0-12-22800-6

  17. Niemz M.H (1996) Laser-Tissue-Interactions; Fundamentals and Applications, Springer Verlag, ISBN : 3-540-60363–8

  18. Hoffman J, Cornelius CP, Groten M, Pröbster L, Pfannenberg C, Schwenzer N (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 101(3):603–612

    Article  Google Scholar 

  19. Pinkert R (1990) Individually produced open endosseous dental implants made of bioverit glass ceramic. First report on experiences. Zahn Mund Kieferheilk Zentralbl 78(5):411–416

    CAS  Google Scholar 

  20. Balossier A, Durand A, Achim VV, Noudel R, Hurel S, Emery E (2011) Reconstruction of the cranial vault using CAD/CAM-fabricated glass bioceramic implants. Neurochirurgie 57(1):21–27

    Article  CAS  PubMed  Google Scholar 

  21. Dost P, Ellermann S, Missfeldt NN, Leyden PJ, Jahnke K (2002) Reconstruction of the stapes superstructure with a combined glass-ceramic (Bioverit) implant in guinea pigs. ORL J Otorhinolaryngol Relat Spec 64(6):429–432

    Article  CAS  PubMed  Google Scholar 

  22. Romo T 3rd, Morris LG, Reitzen SD, Ghossaini SN, Wazen JJ, Kohan D (2009) Reconstruction of congenital microtia-atresia: outcomes with the Medpor/bone-anchored hearing aid-approach. Ann Plast Surg 62(4):384–921

    Article  CAS  PubMed  Google Scholar 

  23. Romo T 3rd, Sclafani AP, Jacono AA (2000) Nasal reconstruction using porous polyethylene implants. Facial Plast Surg 16(1):55–61

    Article  PubMed  Google Scholar 

  24. Choe KS, Stucki-McCormick SU (2000) Chin augmentation. Facial Plast Surg 16(1):45–54

    Article  CAS  PubMed  Google Scholar 

  25. Hashem FK, Al Homsi M, Mahasin ZZ, Gammas MA (2001) Laryngotracheoplasty using the Medpor implant: an animal model. J Otolaryngol 30(6):334–339

    Article  CAS  PubMed  Google Scholar 

  26. Frodel JL, Lee S (1998) The use of high-density polyethylene implants in facial deformities. Arch Otolaryngol Head Neck Surg 124(11):1219–1223

    Article  CAS  PubMed  Google Scholar 

  27. Stimpson P, Kotecha B (2011) Histopathological and ultrastructural effects of cutting radiofrequency energy on palatal soft tissues: a prospective study. Eur Arch Otorhinolaryngol 268(12):1829–36. doi:10.1007/s00405-011-1634-7

    Google Scholar 

Download references

Conflict of interest

There is no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Siedek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siedek, V., Nehls, K., zur Nieden, K. et al. Influence of laser light on bioimplants used in otorhinolaryngology. Lasers Med Sci 29, 965–972 (2014). https://doi.org/10.1007/s10103-013-1425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1425-z

Keywords

Navigation