Skip to main content

Advertisement

Log in

Towards automated classification of clinical optical coherence tomography data of dense tissues

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The native contrast of optical coherence tomography (OCT) data in dense tissues can pose a challenge for clinical decision making. Automated data evaluation is one way of enhancing the clinical utility of measurements. Methods for extracting information from structural OCT data are appraised here. A-scan analysis allows characterization of layer thickness and scattering parameters, whereas image analysis renders itself to segmentation, texture and speckle analysis. All fully automated approaches combine pre-processing, feature registration, data reduction, and classification. Pre-processing requires de-noising, feature recognition, normalization and refining. In the current literature, image exclusion criteria, initial parameters, or manual input are common requirements. The interest of the presented methods lies in the prospect of objective, quick, and/or post-acquisition processing. There is a potential to improve clinical decision making based on automated processing of OCT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254:1178–1181 doi:10.1126/science.1957169

    Article  PubMed  CAS  Google Scholar 

  2. Tomlins PH, Wang RK (2005) Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38:2519–2535 doi:10.1088/0022-3727/38/15/002

    Article  CAS  Google Scholar 

  3. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst (Lond) 131:875–885 doi:10.1039/b602376m

    Article  CAS  Google Scholar 

  4. Stelzer EHK (1998) Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J Microsc 189:15–24 doi:10.1046/j.1365-2818.1998.00290.x

    Article  Google Scholar 

  5. Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A (2007) Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett 33:1135–1137 doi:10.1364/OL.33.001135

    Article  Google Scholar 

  6. Kanter E, Walker R, Marion S, Hoyer P, Barton JK (2005) Optical coherence tomography imaging and fluorescence spectroscopy of a novel rat model of ovarian cancer. Prog Biomed Opt Imaging 6:58610P.1-58610P.8

    Google Scholar 

  7. Yang C (2005) Molecular contrast optical coherence tomography: a review. Photochem Photobiol 81:215–237 doi:10.1562/2004-08-06-IR-266.1

    Article  PubMed  CAS  Google Scholar 

  8. Xu C, Ye J, Marks DL, Boppart SA (2004) Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt Lett 29:1647–1649 doi:10.1364/OL.29.001647

    Article  PubMed  CAS  Google Scholar 

  9. Xi C, Marks DL, Parikh DS, Raskin L, Boppart SA (2004) Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography. Proc Natl Acad Sci U S A 101:7516–7521 doi:10.1073/pnas.0402433101

    Article  PubMed  CAS  Google Scholar 

  10. Bonesi M, Churmakov DY, Ritchie LJ, Meglinski IV (2006) Turbulence monitoring with Doppler optical coherence tomography. Laser Phys Lett 4:304–307 doi:10.1002/lapl.200610098

    Article  Google Scholar 

  11. Park B, Pierce M, Cense B, de Boer J (2003) Real-time multi-functional optical coherence tomography. Opt Express 11:782–793

    PubMed  Google Scholar 

  12. Su J, Tomov IV, Jiang Y, Chen Z (2007) High-resolution frequency-domain second-harmonic optical coherence tomography. Appl Opt 46:1770–1775 doi:10.1364/AO.46.001770

    Article  PubMed  Google Scholar 

  13. Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA (2003) Functional optical coherence tomography for detecting neural activity through scattering changes. Opt Lett 28:1218–1220 doi:10.1364/OL.28.001218

    Article  PubMed  Google Scholar 

  14. Maheswari RU, Takaoka H, Kadono H, Homma R, Tanifuji M (2003) Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. J Neurosci Methods 124:83–92 doi:10.1016/S0165-0270(02)00370-9

    Article  PubMed  Google Scholar 

  15. Morgner U, Drexler W, Kärtner FX, Li XD, Pitris C, Ippen EP et al (2000) Spectroscopic optical coherence tomography. Opt Lett 25:111–113 doi:10.1364/OL.25.000111

    Article  PubMed  CAS  Google Scholar 

  16. Faber DJ, Mik EG, Aalders MC, van Leeuwen TG (2005) Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett 30:1015–1017 doi:10.1364/OL.30.001015

    Article  PubMed  CAS  Google Scholar 

  17. Knüttel A, Boehlau-Godau M (2000) Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt 5:83–92 doi:10.1117/1.429972

    Article  PubMed  Google Scholar 

  18. Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO (2003) Precision of measurement of tissue optical properties with optical coherence tomography. Appl Opt 42:3027–3037 doi:10.1364/AO.42.003027

    Article  PubMed  Google Scholar 

  19. Esenaliev RO, Larin KV, Larina IV, Motamedi M (2001) Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt Lett 26:992–994 doi:10.1364/OL.26.000992

    Article  PubMed  CAS  Google Scholar 

  20. van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG (2005) Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 24:1369–1376 doi:10.1109/TMI.2005.854297

    Article  PubMed  Google Scholar 

  21. Jeon SW, Shure MA, Baker KB, Huang D, Rollins AM, Chahlavi A et al (2006) A feasibility study of optical coherence tomography for guiding deep brain probes. J Neurosci Methods 154:96–101 doi:10.1016/j.jneumeth.2005.12.008

    Article  PubMed  Google Scholar 

  22. Ramrath L, Hofmann UG, Huettmann G, Moser A, Schweikard A (2007) Towards automated OCT-based identification of white brain matter. In: Bildverarbeitung für die Medizin–Algorithmen–Systeme–Anwendungen. Springer, Berlin Heidelberg, pp 414–418. ISBN 978-3-540-71091-2

  23. Turchin IV, Sergeeva EA, Dolin LS, Kamensky VA, Shakhova NM, Richards-Kortum R (2005) Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J Biomed Opt 10:064024 doi:10.1117/1.2137670

    Article  PubMed  Google Scholar 

  24. Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO (2006) In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography. Phys Med Biol 51:3885–3900 doi:10.1088/0031-9155/51/16/001

    Article  PubMed  CAS  Google Scholar 

  25. Levitz D, Thrane L, Frosz MH, Andersen PE, Andersen CB, Valanciunaite J et al (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Express 12:249–259 doi:10.1364/OPEX.12.000249

    Article  PubMed  Google Scholar 

  26. Kaiser JF (1990) On a simple algorithm to calculate the ‘energy’ of a signal. Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP’90) 1:381–384

    Google Scholar 

  27. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK (2003) Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt 8:570–575 doi:10.1117/1.1577575

    Article  PubMed  Google Scholar 

  28. Hillman TR, Adie SG, Seemann V, Armstrong JJ, Jacques SL, Sampson DD (2006) Correlation of static speckle with sample properties in optical coherence tomography. Opt Lett 31:190–192 doi:10.1364/OL.31.000190

    Article  PubMed  Google Scholar 

  29. Brodatz P Textures. (Dover Publications Inc., ISBN: 0–486–40699–7, 2000)

  30. Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL, Rodriguez JJ et al (2006) Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys Med Biol 51:1563–1575 doi:10.1088/0031-9155/51/6/014

    Article  PubMed  Google Scholar 

  31. MacNeill BD, Jang I-K, Bouma BE, Iftimia N, Takano M, Yabushita H et al (2004) Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 44:972–979 doi:10.1016/j.jacc.2004.05.066

    Article  PubMed  Google Scholar 

  32. Qi X, Sivak MV Jr, Isenberg G, Willis JE, Rollins AM (2006) Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. J Biomed Opt 11:044010 doi:10.1117/1.2337314

    Article  PubMed  Google Scholar 

  33. Chen Y, Aguirre AD, Hsiung P-L, Huang S-W, Mashimo H, Schmitt JM et al (2008) Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues. Opt Express 16:2469–2485 doi:10.1364/OE.16.002469

    Article  PubMed  Google Scholar 

  34. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM (2008) Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. J Biomed Opt 13:024003 doi:10.1117/1.2904987

    Article  PubMed  Google Scholar 

  35. Rogowska J, Bryant CM, Brezinski ME (2003) Cartilage thickness measurements from optical coherence tomography. J Opt Soc Am A 20:357–367 doi:10.1364/JOSAA.20.000357

    Article  Google Scholar 

  36. Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express 12:5760–5769 doi:10.1364/OPEX.12.005760

    Article  PubMed  Google Scholar 

  37. Gambichler T, Moussa G, Regeniter P, Kasseck C, Hofmann MR, Bechara FG et al (2007) Validation of optical coherence tomography in vivo using cryostat histology. Phys Med Biol 52:85

    Article  Google Scholar 

  38. Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K et al (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Lasers Surg Med 39:687–695 doi:10.1002/lsm.20573

    Article  PubMed  Google Scholar 

  39. Lee Y-K, Rhodes WT (1990) Nonlinear image processing by a rotating kernel transformation. Opt Lett 15:1383–1385

    Article  CAS  PubMed  Google Scholar 

  40. Rogowska J, Brezinski ME (2002) Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Phys Med Biol 47:641–655 doi:10.1088/0031-9155/47/4/307

    Article  PubMed  Google Scholar 

  41. Fernández DC, Salinas HM, Puliafito CA (2005) Automated detection of retinal layer structures on optical coherence tomography images. Opt Express 13:10200–10216 doi:10.1364/OPEX.13.010200

    Article  Google Scholar 

  42. Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T, Madjarova V et al (2006) Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Opt Express 14:1862–1877 doi:10.1364/OE.14.001862

    Article  PubMed  Google Scholar 

  43. Danielsson PE (1980) Euclidean distance mapping. Comput Graph Image Process 14:227–248 doi:10.1016/0146-664X(80)90054-4

    Article  Google Scholar 

  44. Bonnema G, Cardinal K, Williams S, Barton J (2008) An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets. Phys Med Biol 53:3083–3098 doi:10.1088/0031-9155/53/12/001

    Article  PubMed  Google Scholar 

  45. Cheng Y, Larin KV (2006) Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis. Appl Opt 45:9238–9245 doi:10.1364/AO.45.009238

    Article  PubMed  Google Scholar 

  46. Huang ML, Chen HY (2005) Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci 46:4121–4129 doi:10.1167/iovs.05-0069

    Article  PubMed  Google Scholar 

  47. Jørgenson TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14:364–369 doi:10.1111/j.1600-0846.2008.00304.x

    Article  Google Scholar 

  48. Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J, Tearney GJ (2005) A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev Sci Instrum 76:064301 doi:10.1063/1.1921509

    Article  CAS  Google Scholar 

  49. Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E, Bouma BE et al (2008) Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J Biomed Opt 13:014014 doi:10.1117/1.2837433

    Article  PubMed  Google Scholar 

  50. Zysk AM, Boppart SA (2006) Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J Biomed Opt 11:054015 doi:10.1117/1.2358964

    Article  PubMed  Google Scholar 

  51. Bazant-Hegemark F, Stone N (2008) Near real-time classification of optical coherence tomography data using principal components fed linear discriminant analysis. J Biomed Opt 13:034002 doi:10.1117/1.2931079

    Article  PubMed  Google Scholar 

  52. Bazant-Hegemark F, Stone N, Read MD, McCarthy K, Wang RK (2007) Optical coherence tomography (OCT) imaging and computer aided diagnosis of human cervical tissue specimens. Proc SPIE 6627:66270F doi:10.1117/12.728366

    Article  Google Scholar 

  53. Bazant-Hegemark F, Meglinski I, Kandamany N, Monk B, Stone N, (2008) Optical coherence tomography: a potential tool for unsupervised prediction of treatment response for port-wine stains. Photodiagn Photodyn Ther (in press) doi:10.1016/j.pdpdt.2008.09.001

  54. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DMD, Gradwell E et al (1989) Observer variation in histopathological diagnosis and grading of cervical intraepithelial neoplasia. BMJ 298:707–710

    Article  PubMed  CAS  Google Scholar 

  55. Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R et al (2003) Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus. J Pathol 200:602–609 doi:10.1002/path.1376

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Pump Prime Fund of Cranfield University, the Gloucestershire Hospitals NHS Foundation Trust, and receives funding from the Technology Strategy Board [Grant/Project title OMICRON]. The authors would like to thank Professor Hugh Barr and Ms. Joanne Hutchings for kindly providing the esophageal sample for Fig. 1 (ethics approval by Gloucestershire Local Research Ethics Committee), and Dr. Catherine Kendall and Mr. Martin Isabelle for proofreading this manuscript. Dr. Nicholas Stone holds a Career Scientist Fellowship, which is funded by the UK National Institute of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazant-Hegemark, F., Stone, N. Towards automated classification of clinical optical coherence tomography data of dense tissues. Lasers Med Sci 24, 627–638 (2009). https://doi.org/10.1007/s10103-008-0615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0615-6

Keywords

Navigation