Skip to main content
Log in

Catheters: instrumental advancements in biomedical applications of optical fibers

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This review is focused on the advancements in biomedical engineering regarding the elaboration of new prototypes of optical fiber catheters to be applied in spectroscopic analysis, such as Raman and fluorescence spectroscopy. Our group has contributed to the development of new prototypes with interesting properties, such as side-viewing signal excitation and collection, distal tip with bending control, and Raman scattering minimization from the optical fiber. In addition, several groups have contributed to other new catheter-improving properties of this spectroscopic device. However, a relatively small number of studies has been published in the literature, due to industrial interest in this interdisciplinary and multidisciplinary area. To our knowledge, no review that has focused on the applications of catheters to several modes of spectroscopy has been published. In this work we revised this topic, analyzing the advancements and limitations of the recent biomedical catheters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Utzinger U, Richards-Kortum RR (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8:121–147. doi:10.1117/1.1528207

    Article  PubMed  Google Scholar 

  2. Motz JT, Hunter M, Galindo LH, Gardecki JA, Kramer JR, Dasari RR et al (2004) Optical fiber probe for biomedical Raman spectroscopy. Appl Opt 43:542–554. doi:10.1364/AO.43.000542

    Article  PubMed  Google Scholar 

  3. Lima CJ, Sathaiah S, Silveira L Jr, Zângaro RA, Pacheco MTT (2000) Development of catheters with low fiber background signals for Raman spectroscopy diagnosis applications. Artif Organs 24:231–234. doi:10.1046/j.1525-1594.2000.06525.x

    Article  PubMed  Google Scholar 

  4. Lima CJ, Sathaiah S, Pacheco MTT, Zângaro RA, Manoharan R (2004) Side-viewing fiberoptic catheter for biospectroscopy applications. Lasers Med Sci 19:15–20

    Article  PubMed  Google Scholar 

  5. Moreira LM, Silveira Jr L, Santos FV, Lyon JP, Rocha R, Zângaro RA et al (2008) Raman spectroscopy: a powerful technique for biochemical analysis and diagnosis. Spectroscopy 22:1–19. doi:10.3233/SPE-2008-0326

    CAS  Google Scholar 

  6. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59. doi:10.1088/0031-9155/45/2/201

    Article  PubMed  CAS  Google Scholar 

  7. Lewis IR, Griffiths PR (1996) Raman spectrometry with fiber-optic sampling. Appl Spectrosc 50:12A–29A. doi:10.1366/0003702963904908

    Article  CAS  Google Scholar 

  8. Allred CD, McCreery RL (1990) Near-infrared raman spectroscopy of liquids and solids with a fiber-optic sampler, diode laser, and CCD detector. Appl Spectrosc 44:1229–1231. doi:10.1366/0003702904086498

    Article  CAS  Google Scholar 

  9. Williams KPJ (1990) Remote sampling using a fibre-optic probe in Fourier transform Raman spectroscopy. J Raman Spectrosc 21:147–151. doi:10.1002/jrs.1250210213

    Article  CAS  Google Scholar 

  10. Motz JT, Ghandi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR et al (2005) Real-time Raman system for in vivo disease diagnosis. J Biomed Opt 10:031113. doi:10.1117/1.1920247

    Article  PubMed  CAS  Google Scholar 

  11. Römer TJ, Brennan JF, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A et al (2000) Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 20:1–13

    Google Scholar 

  12. Lima CJ, Simões M, Pacheco MTT, Silveira L Jr, Villaverde AB (2008) Optical fiber catheter with distal end bending mechanism control for Raman biospectroscopy. Instrum Sci Technol 36:1–13. doi:10.1080/10739140701749971

    Article  CAS  Google Scholar 

  13. Shim MG, Wilson BC, Marple E, Wach M (1999) Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl Spectrosc 53:619–627. doi:10.1366/0003702991947225

    Article  CAS  Google Scholar 

  14. Myrick ML, Angel SM (1990) Elimination of background in fiber-optic Raman measurements. Appl Spectrosc 44:565–570. doi:doi:10.1366/0003702904087235

    Article  CAS  Google Scholar 

  15. Li Y, Ma J (1997) Optical-fiber raman probe with tilted-end fibers. Appl Spectrosc 51:277–279. doi:10.1366/0003702971939965

    Article  CAS  Google Scholar 

  16. Crow P, Molckovsky A, Stone N, Uff J, Wilson B, Wongkeesong LM (2005) Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 65:1126–1130. doi:10.1016/j.urology.2004.12.058

    Article  PubMed  CAS  Google Scholar 

  17. Ma J, Li Y (1998) Low background SERS measurements using unfiltered optical fibre probes. Int J Vibrat Spectrosc 2:42–49

    Google Scholar 

  18. Koljenovic S, Schut TCB, Wolthuis R, de Jong B, Santos L, Caspers PJ et al (2005) Tissue characterization using high wave number Raman spectroscopy. J Biomed Opt 10:031116. doi:10.1117/1.1922307

    Article  PubMed  CAS  Google Scholar 

  19. Cothren RM, Kittrell C, Hayes GB, Willett RL, Sacks B, Malk EG et al (1986) Controlled light delivery for laser angiosurgery. IEEE J Quantum Electron 22:4–7. doi:10.1109/JQE.1986.1072884

    Article  Google Scholar 

  20. Cothren RM, Costello B, Hoyt C, Hayes GB, Ratliff NB, Kittrell C et al (1988) Tissue removal using an 8F multifiber shielded laser angiosurgery catheter. Lasers Life Sci 2:75–90

    Google Scholar 

  21. Komachi Y, Sato H, Tashiro H (2006) Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Appl Opt 45:7938–7943. doi:10.1364/AO.45.007938

    Article  PubMed  CAS  Google Scholar 

  22. Lima CJ, Simões M, Silveira L Jr, Silveira L, Villaverde AB, Pacheco MTT (2007) Multifiber optical catheter with bending control of distal end: applications of raman biospectroscopy. J Appl Spectrosc 74:107–114. doi:10.1007/s10812-007-0017-8

    Article  CAS  Google Scholar 

  23. Tanaka K, Pacheco MTT, Brennan JF, Itzkan I, Berger AJ, Dasari RR et al (1996) Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue. Appl Opt 35:758–763

    Article  Google Scholar 

  24. Scepanovic OR, Fitzmaurice M, Gardecki JA, Angheloiu GO, Awasthi S, Motz TJ et al (2006) Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy. J Biomed Opt 11:021007. doi:10.1117/1.2187943

    Article  PubMed  Google Scholar 

  25. Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, Galindo LH et al (2006) In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt 11:021003. doi:10.1117/1.2190967

    Article  PubMed  Google Scholar 

  26. Römer TJ, Brennan JF, Fitzmaurice M, Feldstein ML, Deinum G, Myles JL et al (1998) Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97:878–885

    PubMed  Google Scholar 

  27. Buschman HP, Motz JT, Deinum G, Römer TJ, Fitzmaurice M, Kramer JR et al (2001) Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovasc Pathol. 10:59–68 doi:10.1016/S1054-8807(01)00063-1

    Article  PubMed  CAS  Google Scholar 

  28. Paula AR Jr, Sathaiah S (2005) Raman spectroscopy for diagnosis of atherosclerosis: a rapid analysis using neural networks. Med Eng Phys 27:237–244. doi:10.1016/j.medengphy.2004.10.007

    Article  PubMed  Google Scholar 

  29. Brennan JF, Römer TJ, Lees RS, Tercyak AM, Kramer JR, Feld MS (1997) Determination of human coronary artery composition by Raman spectroscopy. Circulation 96:99–105

    PubMed  CAS  Google Scholar 

  30. Silveira L Jr, Sathaiah S, Zângaro RA, Pacheco MTT, Chavantes MC, Pasqualucci CA (2003) Near-infrared Raman spectroscopy of human coronary arteries: histopathological classification based on mahalanobis distance. J Clin Laser Med Surg 21:203–208. doi:10.1089/104454703768247774

    Article  PubMed  Google Scholar 

  31. Rocha R, Villaverde AB, Pasqualucci CA, Silveira L Jr, Brugnera A, Costa MS et al (2007) Identification of calcifications in cardiac valves by near infrared raman spectroscopy. Photomed Laser Surg 25:287–290. doi:10.1089/pho.2007.2100

    Article  PubMed  CAS  Google Scholar 

  32. Rocha R, Silveira L Jr, Villaverde AB, Pasqualucci CA, Costa MS, Brugnera A et al (2007) Use of near-infrared raman spectroscopy for identification of atherosclerotic plaques in the carotid artery. Photomed Laser Surg 25:482–486. doi:10.1089/pho.2007.2111

    Article  PubMed  CAS  Google Scholar 

  33. Nogueira GV, Silveira L Jr, Martin AA, Zângaro RA, Pacheco MTT, Chavantes MC et al (2005) Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 10:031117 doi:10.1117/1.1908129

    Article  PubMed  Google Scholar 

  34. Lima CJ, Pacheco MTT, Villaverde AB, Zângaro RA, Moreira LM, Damião AJ (2008) Catheter with dielectric optical filter deposited upon the fiber optic end for Raman in vivo biospectroscopy applications. Spectroscopy (Ottawa) (in press)

  35. Lázaro JC, de Lima CJ, Moreira LM, Silveira Jr L, Villaverde AB, Pacheco MTT (2008) Analysis of the alteration in the optical configuration of Raman spectrometer in order to optimizate the signal to noise ratio (SNR) in a specific wavelength range of clinical interest, “Spectroscopy” (Ottawa) (in press)

  36. Stone N, Backer R, Rogers K, Parker AW, Matousek P (2007) Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst (Lond) 132:899–905. doi:10.1039/b705029a

    Article  CAS  Google Scholar 

  37. Nascimento OF, Villaverde AB, Zângaro RA, Pacheco MTT, Durrant SF (2004) Optical fiber device and biological tissue phantoms for determination of optical parameters in the near-infrared region. Instrum Sci Technol 32:489–505. doi:10.1081/CI-200029758

    Article  CAS  Google Scholar 

  38. Moreira LM, Santiago PS, Almeida EV, Tabak M (2008) Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS): effects of oligomeric dissociation. Colloids Surf B 61:153–163. doi:10.1016/j.colsurfb.2007.07.010

    Article  CAS  Google Scholar 

  39. Santiago PS, Moreira LM, Almeida EV, Tabak M (2007) Giant extracellular Glossoscolex paulistus hemoglobin (HgGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: dissociation of oligomeric structure and autoxidation. Biochim Biophys Acta 1770:506–517. doi:10.1016/j.bbagen.2006.11.005

    PubMed  CAS  Google Scholar 

  40. Ribelatto JC, Poli AL, Moreira LM, Imasato H (2006) Spectroscopic study of the equilibrium between hexacoordinated and pentacoordinated species of the native and reconstituted d monomers of the Glossoscolex paulistus giant extracellular hemoglobin in alkaline medium. Quim Nova 29:666–673. doi:10.1590/S0100-40422006000400008

    CAS  Google Scholar 

  41. Ribelatto JC, Poli AL, Moreira LM, Imasato H (2005) Pentacoordinate and hexacoordinate ferric hemes from the native and reconstituted d monomers of Glossoscolex paulistus extracellular hemoglobin: spectroscopic studies in acid medium. Quim Nova 28:829–833. doi:10.1590/S0100-40422005000500019

    CAS  Google Scholar 

  42. Hage R, Galhanone PR, Zângaro RA, Rodrigues KC, Pacheco MTT, Martin AA et al (2003) Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue. Lasers Med Sci 18:171–176. doi:10.1007/s10103-003-0271-9

    Article  PubMed  CAS  Google Scholar 

  43. Freeberg JA, Serachitopol DM, McKinnon N, Price R, Atkinson EN, Cox DD et al (2007) Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe. J Biomed Opt 12:034015. doi:10.1117/1.2750332

    Article  PubMed  Google Scholar 

  44. Zângaro RA, Silveira L Jr, Manoharan R, Zonios G, Itzkan I, Dasari RR et al (1996) Rapid multi-excitation fluorescence spectroscopy system for in vivo tissue diagnosis. Appl Opt 35:5211–5219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, C.J., Moreira, L.M., Lyon, J.P. et al. Catheters: instrumental advancements in biomedical applications of optical fibers. Lasers Med Sci 24, 621–626 (2009). https://doi.org/10.1007/s10103-008-0608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0608-5

Keywords

Navigation