Skip to main content
Log in

Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Laccases are the oldest with low substrate specificity enzymes used for degradation of various compounds, especially, dyes. In the present investigation, the cell-free extract of laccase enzyme is applied to degrade azo dyes used in leather processing. The enzyme degrades the azo dyes rapidly at optimum growth conditions of pH 7.0, temperature 37 °C and incubation duration of 72 h. Better production of the enzyme was achieved with dextrose, yeast extract, acetone, copper sulphate and orange peel. The molecular weight of laccase was found to be 63 kDa. The percentage of degradation is found to be 96.4 % for CI Acid black 210 and 92.2 % for the CI Acid black 234. Ultraviolet–visible spectral analysis indicates the presence of peaks in the visible region confirming the complete degradation of the dye sample. Fourier transform-infrared spectroscopy analysis shows the transformation of N=N into either N2 or NH3 and then into biomass. The mass spectra analysis shows conversion of azo dye to final product through various intermediates with their respective molecular weights. Chemical oxygen demand (COD) and biochemical oxygen demand (BOD) analysis reveal the reduction of pollution load more than 92 % in the experimental process while maintaining BOD/COD ratio to about 30 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolourization and detoxification of textile dyes with a laccase from Trametes hirsute. App Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Arias EM, Areans M, Rodriguez V, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp bioleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 335. Appl Environ Microbiol 69:1953–1958

    Article  CAS  Google Scholar 

  • Arora DS, Sharma R (2010) Ligninolytic fungal laccase and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases occurrence and properties. FEMS Microb Rev 30:215–242

    Article  CAS  Google Scholar 

  • Benfield G, Bocks SM, Bromley K, Brown BR (1964) Studies in fungal and plant laccases. Phytochem 3:79–88

    Article  CAS  Google Scholar 

  • Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Cameselle C, Pazos M, Lorenzo M, Sanroman MA (2000) Enhanced decolourization ability of laccase towards various synthetic dyes by an electrocatalysis technology. Biotechnol Lett 25:603–606

    Article  Google Scholar 

  • Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environm Sci 1:6

    Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2013) Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol Environ Policy 15(2):255–264

    Article  CAS  Google Scholar 

  • Champagne PP, Ramsay JA (2010) Dye decolourization and detoxification by laccase immobilized on porous glass beads. Biores Technol 101:2230–2235

    Article  CAS  Google Scholar 

  • Chen Y, Liu C, Nie J, Wu S, Wang D (2014) Removal of COD and decolorizing from landfill leachate by Fenton’s reagent advanced oxidation. Clean Technol Environ Policy 16(1):189–193

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  • Christie SAD, Shanmugam S (2012) Analysis of fungal cultures isolated from Anamalai hills for laccase enzyme production effect on dye decolourization, antimicrobial activity. Int J Plant Animal Environ Sci 2(3):143–148

    Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    CAS  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  CAS  Google Scholar 

  • Das N, Charumathi D (2012) Remediation of 26. Park EH, Jan MS, Cha IH, et al (2005) Synthetic dyes from wastewater using yeast—an Decolourization of a sulfonatedazo dye, Congo Red, overview. Indian Journal of Biotechnology, by Staphylococcus sp. EY-3. J Microbiol 11:369–380

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Dominguez A, Couto SR, Sanroman MA (2005) Dye decolourization by Trametes hirsuta immobilized into alginate beads. World J Microbiol Biotechnol 21:405–409

    Article  CAS  Google Scholar 

  • Dominguez A, Rodriguez O, Tavares APM, Macedo EA, Longo MA, Sanroman MA (2011) Studies of laccase from Trametes versicolor in aqueous solutions of several methylimidazolium ionic liquids. Biores Tech 102:7494–7499

    Article  CAS  Google Scholar 

  • Dube EF, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourization of an indigo dye. Appl Microbiol Biotechnol 79:597–603

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods of the examination of water and wastewater. The American Public Health Association (APHA), Washington

  • Ellen CG, Dekker RFH, Barbosa AM (2008) Orange bagasse as a substrate for the production of pectinase and laccase by Botryosphaeria rodhina MAMB-05 in submerged and solid state fermentation. Biores Tech 3:335–345

    Google Scholar 

  • Font XP, Blanquez N, Casas M, Gibarrel M, Sarra V, Caminal G (2003) Mechanism of textile metal dye transformation by Trametes versicolor. Water Res 38:2166–2172

    Google Scholar 

  • Galai S, Limam F, Marzouki M (2009) A new Stenotrophomonas maltophilia strain producing laccase, use in decolourization of synthetics dyes. Appl Biochem Biotech 158:416–431

    Article  CAS  Google Scholar 

  • Gunasekaran R, Kanmani S (2014) Performance of gas chlorination in decolourization of textile dyeing wastewater: a pilot study. Clean Technol Environ Policy 16(3):601–607

    Article  CAS  Google Scholar 

  • Han MJ, Choi HT, Song HG (2005) Purification and characterization of laccase from the white rot fungus Trametes versicolor. J Microbiol 43:555–560

    CAS  Google Scholar 

  • Hildebrand C, Kuglin VB, Brandao HL, Vilar VJP, Souza SMAGU, Souza AAU (2014) Insights into nanofiltration of textile wastewaters for water reuse. Clean Technol Environ Policy 16(3):591–600

    Article  CAS  Google Scholar 

  • Hough MA, Hall JF, Kanbi LD, Hasnain SS (2001) Structure of the M148Q mutant of rusticyanin at 1.5A: a model for the copper site of stellacyanin. Acta Crystallogr 57:355–360

    CAS  Google Scholar 

  • Jolivalt C, Raynal A, Caminade E, Kokel B, Le Goffic F, Mougin C (1999) Transformation of N′,N′-dimethyl-N-(hydroxyphenyl) ureas by laccase from the White-rot fungus Trametes versicolor. Appl Microb Biotechnol 51:676–681

    Article  CAS  Google Scholar 

  • Kanagaraj J, Mandal AB (2012) Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads. Environ Sci Poll Res 19:42–52

    Article  CAS  Google Scholar 

  • Kanagaraj J, Panda RC (2011) Modelling of dye uptake rate, related interactions, and binding energy estimation in leather matrix using protein based nano particle polymer. Ind Eng Chem Res 50(22):12400–12408

    Article  CAS  Google Scholar 

  • Kanagaraj J, Chandra Babu NK, Mandal AB (2008) Recovery and reuse of chromium from chrome tanning wastewater aiming towards zero discharge of pollution. J Clean Prod 16:1807–1813

    Article  CAS  Google Scholar 

  • Kanagaraj J, Senthilvelan T, Mandal AB (2012) Biological method for decolourization of an azo dye: clean technology to reduce pollution load in dye waste water. Clean Technol Environ Policy 14:565–572

    Article  CAS  Google Scholar 

  • Kandelbauer A, Erlacher A, Cavaco-paulo A, Guebitz GM (2004) Laccase-catalyzed decolourization of the synthetic azo-dye Diamond Black Pv 200 and of some structurally related derivatives. Biocata Biotransform 22(5/6):331–339

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Growley DE (2007) Accelerated decolourization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biotechnol 78:361–369

    Article  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565

    Article  CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87

    Article  CAS  Google Scholar 

  • Meenatchisundaram S, Devaraj M, Rai CL, Nadarajan KM (2014) An integrated approach for enhanced textile dye degradation by pre-treatment combined biodegradation. Clean Technol Environ Policy 16(3):501–511

    Article  CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) Blue laccases. J Biochem 72(10):1136–1150

    CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolourization of textile effluent containing azo, diazo and reactive dyes. Proc Biochem 31:435–442

    Article  CAS  Google Scholar 

  • Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent- adapted and non-adapted bacteria. Afr J Biotechnol 5:1980–1984

    CAS  Google Scholar 

  • Ozdemir G, Pazarbasi B, Kocyigit A, Omeroglu EE, Yasa I, Karaboz I (2008) Decolourization of Acid Black 210 by Vibrio harveyi TEMS1, a newly isolated bioluminescent bacterium from Izmir Bay, Turkey. World J Microbiol Biotechnol 24:1375–1381

    Article  Google Scholar 

  • Ozdemir U, Ozbay I, Ozbay B, Veli S (2014) Application of economical models for dye removal from aqueous solutions: cash flow, cost–benefit, and alternative selection methods. Clean Technol Environ Policy 16(2):423–429

    Article  CAS  Google Scholar 

  • Palma C, Moreira MT, Mielgo I, Feijoo G, Lema JM (1999) Use of a fungal bioreactor as a pretreatment or post-treatment step for continuous decolourization of dyes. Water Sci Technol 40:131–136

    Article  CAS  Google Scholar 

  • Pandey A, Singh V, Iyengar V (2007) Bacterial decolourization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Park EH, Jang MS, Cha IH, Choi YL, Cho YS, Kim CH, Lee YC (2005) Decolourization of a sulfonated azo dye, Congo red, by Staphylococcus sp. EY-3. J Microb Biotech 15:221–225

    CAS  Google Scholar 

  • Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    CAS  Google Scholar 

  • Rodriguez-Couto S (2012) Laccases for denim bleaching: an eco-friendly alternative. The Open Textile J 5:1–7

    Article  CAS  Google Scholar 

  • Rogalski J, Leonowicz A (2004) Laccase. In: Pandey A (ed) Concise encyclopedia of bioresource technology. Food Products Press & Haworth Reference Press, New York, pp 533–542

    Google Scholar 

  • Sadaf S, Bhatti HN (2014) Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: batch and fixed bed studies. Clean Technol Environ Policy 16(3):527–544

    Article  CAS  Google Scholar 

  • Sadhukhan B, Mondal NK, Chattoraj S (2014) Biosorptive removal of cationic dye from aqueous system: a response surface methodological approach. Clean Technol Environ Policy 16(6):1015–1025

    Article  CAS  Google Scholar 

  • Senthilvelan T, Kanagaraj J, Panda RC, Mandal AB (2014) Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technol Environ Policy 16:113–126

    Article  CAS  Google Scholar 

  • Shraddha R, Shekher S, Sehgal M, Kamthania A, Kumar (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 1–11. doi:10.4061/2011/217861

  • Silva TAL, Tambourgi EB, Takaki GMC (2013) Inorganic polyphosphate accumulation by Cunninghamella elegans (UCP 542) and its influence in the decolorization of textile azo dye Orange II. Clean Technol Environ Policy 15(1):179–184

    Article  Google Scholar 

  • Sivakumar R, Rajendran R, Balakumar C, Tamilvendan M (2010) Isolation, screening and optimization of production medium for thermostable laccase production from Ganoderma sp. Int J Eng Sci Tech 2(12):7133–7141

    Google Scholar 

  • Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, it’s isozyme pattern and effluent decolourization by the fungus NIOCC #2a, isolated from mangrove wood. Ind J Mar Sci 35:364–372

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of waste water from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Vasdev K, Dhawan S, Kapoor RK, Kuhad RC (2005) Biochemical characterization and molecular evidence of a laccase from the birds nest fungus Cyathus bulleri. Fungal Genet Biol 42:684–693

    Article  CAS  Google Scholar 

  • Vedaraman N, Begum SS, Srinivasan SV (2013) Response surface methodology for decolourisation of leather dye using ozonation in a packed bed reactor. Clean Technol Environ Policy 15(4):607–616

    Article  CAS  Google Scholar 

  • Velu C, Veeramani E, Suntharam S, Kalimuthu K (2011) Insilico screening and comparative study on the effectiveness of textile dye decolourization by crude laccase immobilized alginate encapsulated beads from Pleurotus ostreatus. J Bioprocess Biotechn 1:4

    Google Scholar 

  • Whiteley CG (2007) Bioremediation of textile dyes. Ind Bioprocess 29:7

    Google Scholar 

  • Xu F (1999) Laccase. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, bioseparation. Wiley, New York, pp 1545–1554

    Google Scholar 

  • Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  • Yu JQ, Chen Y, Shao S, Zhang Y, Liu SL, Zhang SS (2014) A study on establishing an optimal water network in a dyeing and finishing industrial park. Clean Technol Environ Policy 16(1):45–57

    Article  Google Scholar 

  • Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71:6711–6718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kanagaraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, J., Senthilvelan, T. & Panda, R.C. Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Techn Environ Policy 17, 1443–1456 (2015). https://doi.org/10.1007/s10098-014-0869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0869-6

Keywords

Navigation