Skip to main content

Advertisement

Log in

Clinical epidemiology of pulmonary aspergillosis in hospitalized patients and contribution of Cyp51A, Yap1, and Cdr1B mutations to voriconazole resistance in etiologic Aspergillus species

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pulmonary aspergillosis is a life-threatening fungal infection with worldwide distribution. In the present study, clinical epidemiology of pulmonary aspergillosis and antifungal susceptibility of etiologic Aspergillus species were evaluated in one-hundred fifty patients with special focus on the frequency of voriconazole resistance. All the cases were confirmed by the clinical pictures, laboratory findings, and isolation of etiologic Aspergillus species which belonged to two major species, i.e., A. flavus and A. fumigatus. Seventeen isolates displayed voriconazole MIC greater than or equal to the epidemiological cutoff value. Expression of cyp51A, Cdr1B, and Yap1 genes was analyzed in voriconazole-intermediate/resistant isolates. In A. flavus, Cyp51A protein sequencing showed the substitutions T335A and D282E. In the Yap1 gene, A78C replacement led to Q26H amino acid substitution that was not reported previously in A. flavus resistant to voriconazole. No mutations associated with voriconazole resistance were found in the three genes of A. fumigatus. The expression of Yap1 was higher than that of two other genes in both A. flavus and A. fumigatus. Overall, voriconazole-resistant strains of both A. fumigatus and A. flavus demonstrated overexpression of Cdr1B, Cyp51A, and Yap1 genes compared to voriconazole-susceptible strains. Although there are still ambiguous points about the mechanisms of azole resistance, our results showed that mutations were not present in majority of resistant and intermediate isolates, while all of these isolates showed overexpression in all three genes studied. As a conclusion, it seems that the main reason of the emergence of mutation in voriconazole-resistant isolates of A. flavus and A. fumigatus is previous or prolonged exposure to azoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Krishnan S, Manavathu EK, Chandrasekar PH (2009) Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses 52:206–222. https://doi.org/10.1111/j.1439-0507.2008.01642.x

    Article  CAS  PubMed  Google Scholar 

  2. Alastruey-Izquierdo A, Mellado E, Pelaez T, Peman J, Zapico S, Alvarez M, Rodriguez-Tudela JL, Cuenca-Estrella M (2013) Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP study). Antimicrob Agents Chemother 57:3380–3387. https://doi.org/10.1128/AAC.00383-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohamadnia A, Salehi Z, Namvar Z et al (2020) Molecular identification, phylogenetic analysis and antifungal susceptibility patterns of Aspergillus nidulans complex and Aspergillus terreus complex isolated from clinical specimens. J Mycol Med 30:101004. https://doi.org/10.1016/j.mycmed.2020.101004

  4. Russo A, Tiseo G, Falcone M, Menichetti F (2020) Pulmonary aspergillosis: an evolving challenge for diagnosis and treatment. Infect Dis Ther 9:511–524. https://doi.org/10.1007/s40121-020-00315-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ukai Y, Kuroiwa M, Kurihara N, Naruse H, Homma T, Maki H, Naito A (2018) Contributions of yap1 mutation and subsequent atrF upregulation to voriconazole resistance in Aspergillus flavus. Antimicrob Agents Chemother 62(11):e01216-e1218

    Article  PubMed  PubMed Central  Google Scholar 

  6. van der Linden JW, Camps SM, Kampinga GA, Arends JP et al (2013) Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 57:513–520. https://doi.org/10.1093/cid/cit320

    Article  CAS  PubMed  Google Scholar 

  7. Steinmann J, Hamprecht A, Vehreschild MJ et al (2015) Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother 70:1522–1526. https://doi.org/10.1093/jac/dku566

    Article  CAS  PubMed  Google Scholar 

  8. Buil JB, van der Lee HAL, Rijs AJMM, Zoll J, Hovestadt JAMF, Melchers WJG, Verweij PE (2017) Single-center evaluation of an agar-based screening for azole resistance in Aspergillus fumigatus by using VIPcheck. Antimicrob Agents Chemother 61(12):e01250-e1317

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paul RA, Rudramurthy SM, Dhaliwal M, Singh P, Ghosh AK, Kaur H, Varma S, Agarwal R, Chakrabartia A (2018) Magnitude of voriconazole resistance in clinical and environmental isolates of Aspergillus flavus and investigation into the role of multidrug efflux pumps. Antimicrob Agents Chemother 62(11):e01022-e1118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krishnan-Natesan S, Chandrasekar PH, Alangaden GJ, Manavathu EK (2008) Molecular characterisation of Cyp51A and Cyp51B genes coding for P450 14a-lanosterol demethylases A (Cyp51Ap) and B (Cyp51Bp) from voriconazole-resistant laboratory isolates of Aspergillus flavus. Int J Antimicrob Agents 32:519–524. https://doi.org/10.1016/j.ijantimicag.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  11. Paul RA, Rudramurthy SM, Meis JF, Mouton JW, Chakrabarti A (2015) A novel Y319H substitution in Cyp51C associated with azole resistance in Aspergillus flavus. Antimicrob Agents Chemother 59:6615–6619. https://doi.org/10.1128/AAC.00637-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alanio A, Sitterle E, Liance M, Farrugia C, Foulet F, Botterel F, Hicheri Y, Cordonnier C, Costa JM, Bretagne S (2011) Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J Antimicrob Chemother 66:371–374. https://doi.org/10.1093/jac/dkq450

    Article  CAS  PubMed  Google Scholar 

  13. Camps SMT, Van Der Linden JWM, Li Y, Kuijper EJ, Van Dissel JT, Verweij PE, Melchers WJG (2012) Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother 56:10–16. https://doi.org/10.1128/AAC.05088-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdolrasouli A, Rhodes J, Beale MA et al (2015) Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. Mbio J 6(3):e00536-e615

  15. Mair W, Lopez-Ruiz F, Stammler G et al (2016) Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Manag Sci 72:1449–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cannon RD, Lamping E, Holmes AR et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321. https://doi.org/10.1128/CMR.00051-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Natesan SK, Lamichchane AK, Swaminathan S, Wu W (2013) Differential expression of ATP-binding cassette and/or major facilitator superfamily class efflux pumps contributes to voriconazole resistance in Aspergillus flavus. Diagn Microbiol Infect Dis 76:458–463. https://doi.org/10.1016/j.diagmicrobio.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  18. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, Ramage G, Denning DW, Bowyer P (2013) The cdr1B efflux transporter is associated with non-Cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 68:1486–1496. https://doi.org/10.1093/jac/dkt075

    Article  CAS  PubMed  Google Scholar 

  19. Dudakova A, Spiess B, Tangwattanachuleeporn M, Sasse C, Buchheidt D, Weig M, Groß U, Badera O (2017) Molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in Aspergillus species Clin Microbiol Rev 30(4). https://doi.org/10.1128/CMR.00095-16

  20. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, Denning DW (2010) Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother 65:2116–2118. https://doi.org/10.1093/jac/dkq279

    Article  CAS  PubMed  Google Scholar 

  21. Samson RA, Visagie CM, Houbraken J (2005) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

  22. Frisvad JC, Hubka V, Ezekiel CN et al (2019) Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 93:163

    Article  Google Scholar 

  23. Wayne, PA (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard, 2nd ed. CLSI document M38-A2. Clinical and Laboratory Standards Institute

  24. P.A. Wayne (2018) Clinical and Laboratory Standards Institute (CLSI), epidemiological cutoff values for antifungal susceptibility testing, 2nd ed. Supplement M59

  25. Hong S, Go S, Shin H, Frisvad J, Samson R (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Tamura K, Jajobsen IB, Nei M (2001) MEGA: molecular evolutionary genetic analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  27. Miller MA, Pfeiffer W, Schwartz T (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), (New Orleans, LA: IEEE)

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692. https://doi.org/10.1099/mic.0.2007/007641-0

    Article  CAS  PubMed  Google Scholar 

  30. Chakrabarti A, Rudramurthy SM, Panda N, Das A, Singh A (2015) Epidemiology of chronic fungal rhinosinusitis in rural India. Mycoses 58:294–302. https://doi.org/10.1111/myc.12314

    Article  PubMed  Google Scholar 

  31. Ghosh AK, Gupta A, Rudramurthy SM, Paul S, Hallur VK, Chakrabarti A (2016) Fungal keratitis in North India: spectrum of agents, risk factors and treatment. Mycopathologia 181:843–850

    Article  CAS  PubMed  Google Scholar 

  32. Chakrabarti A, Shivaprakash MR, Singh R, Tarai B, George VK, Fomda BA, Gupta A (2008) Fungal endophthalmitis: fourteen years’ experience from a center in India. Retina 28:1400–1407

    Article  PubMed  Google Scholar 

  33. Najafzadeh MJ, Dolatabadi S, Zarrinfar H, Houbraken J (2021) Molecular diversity of aspergilli in two Iranian hospitals. Mycopathologia 186:519–533

  34. Moin S, Farooqi J, Jabeen K, Laiq S, Zafar A (2020) Screening for triazole resistance in clinically significant Aspergillus species; report from Pakistan. Antimicrob Resist Infect Control 9(62):1–8. https://doi.org/10.1186/s13756-020-00731-8

    Article  Google Scholar 

  35. Zanganeh E, Zarrinfar H, Rezaeetalab F et al (2018) Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microb Pathog 116:296–300. https://doi.org/10.1016/j.micpath.2018.01.047

    Article  PubMed  Google Scholar 

  36. Chabia ML, Goracci A, Rochec N, Paugamd A, Lupoe A, Revel MP (2015) Pulmonary aspergillosis. Diagn. Interv. Imaging 96:435–442. https://doi.org/10.1016/j.diii.2015.01.005

    Article  Google Scholar 

  37. Khodavaisy S, Badali H, Hashemi SJ et al (2016) In vitro activities of five antifungal agents against 199 clinical and environmental isolates of Aspergillus flavus, an opportunistic fungal pathogenActivité in vitro de cinq agents antifongiques vis-à-vis de 199 isolats cliniques et environnementaux d’Aspergillus flavus, un agent fongique pathogène opportuniste. Journal de Mycologie Medicale 26(2):116–121. https://doi.org/10.1016/j.mycmed.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Nabili M, Shokohi T, Moazeni M, Khodavaisy S, Aliyali M, Badiee P, Zarrinfar H, Hagen F, Badali H (2016) High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol 65:468–475. https://doi.org/10.1099/jmm.0.00025

    Article  CAS  PubMed  Google Scholar 

  39. Howard SJ, Arendrup MC (2011) Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol 49:90–95. https://doi.org/10.3109/13693786.2010.508469

    Article  CAS  Google Scholar 

  40. Sharma C, Kumar R, Kumar N, Masih A, Gupta D, Chowdharya A (2018) Investigation of multiple resistance mechanisms in voriconazole-resistant Aspergillus flavus clinical isolates from a chest hospital surveillance in Delhi India. Antimicrob Agents Chemother 62(3):e01928-e2017

  41. Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF (2015) Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front Microbiol 6:428. https://doi.org/10.3389/fmicb.2015.00428

    Article  PubMed  PubMed Central  Google Scholar 

  42. Espinel-Ingroff A, Diekema DJ, Fothergill A, Johnson E, Pelaez T, Pfaller MA, Rinaldi MG, Canton E, Turnidge J (2010) Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38–A2 document). J Clin Microbiol 48:3251–3257. https://doi.org/10.1128/JCM.00536-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lestrade PP, Buil JB, van der Beek MT et al (2020) Paradoxal trends in azole resistant Aspergillus fumigatus in a national multicenter surveillance program, the Netherlands, 2013–2018. Emerg Infect Dis 26(7):1447–1455. https://doi.org/10.3201/eid2607.200088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohammadi F, Hashemi SJ, Seyedmousavi SM, Akbarzade D (2018) Isolation and characterization of clinical triazole resistance Aspergillus fumigatus in Iran. Iran J Public Health 47(7):994–1000. http://ijph.tums.ac.ir

  45. Ahangarkani F, Puts Y, Nabili M, Khodavaisy S, Moazeni M, Salehi Z, Laal Kargar M, Badali H, Meis JF (2020) First azole-resistant Aspergillus fumigatus isolates with the environmental TR46/Y121F/T289A mutation in Iran. Mycoses 63:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Melles DC, Degener JE, de Greeff Ir SC, Mouton JW, Schultsz C, Stobberingh EE, Verduin CM (2017) NethMap, Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands in 2016. Chapter 4.6.7, pp.149

  47. Lestrade PP, Bentvelsen RG, Schauwvlieghe AFAD et al (2019) Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin Infect Dis 68(9):1463–1471. https://doi.org/10.1093/cid/ciy859

    Article  CAS  PubMed  Google Scholar 

  48. Buied A, Moore CB, Denning DW, Bowyer P (2013) High-level expression of Cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother 68:512–514. https://doi.org/10.1093/jac/dks451

    Article  CAS  PubMed  Google Scholar 

  49. Moye-Rowley WS (2015) Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Front Microbiol 6(70):1–6. https://doi.org/10.3389/fmicb.2015.00070

    Article  Google Scholar 

  50. Bader O, Weig M, Reichard U et al (2013) Cyp51A-based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob Agents Chemother 57:3513–3517. https://doi.org/10.1128/AAC.00167-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coleman JJ, Mylonakis E (2009) Efflux in fungi: la piece de resistance. PLoS Pathog 5:e1000486. https://doi.org/10.1371/journal.ppat.1000486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mellado E, Garcia-Effron G, Alcazar-Fuoli L et al (2007) A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of Cyp51A alterations. Antimicrob Agents Chemother 51(6):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thakur R, Tiwari S, Shankar J (2016) Differential expression pattern of heat shock protein genes in toxigenic and atoxigenic isolate of Aspergillus flavus. Microbiol Res J 14(2):1–9

    Google Scholar 

Download references

Funding

This work was financially supported by the Research Deputy of the Pasteur Institute of Iran.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Salehi and Mehdi Razzaghi-Abyaneh designed and conceived the study; Zahra Salehi performed the experiments and wrote the manuscript draft; Somayeh Sharifynia cultured patient samples; Zahra Abtahian recruited all patients and conducted all interviews; Payam Tabarsi, Majid Marjani, and Afshin Moniri handled the patients and collected patient samples; Naser Nasiri performed statistical analyses; Mihan Poorabdollah performed pathology examination; Masoomeh Shams-Ghahfarokhi and Fatemehsadat Jamzivar assisted in molecular analyses and interpretation of the molecular data; Mohammadreza Salehi prepared the patient questionnaire. Mehdi Razzaghi-Abyaneh supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh.

Ethics declarations

Ethics approval

The study was approved by the Research Ethics Committee of the Pasteur Institute of Iran (Approved ID: IR.PII.REC.1398.020).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33.4 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, Z., Sharifynia, S., Jamzivar, F. et al. Clinical epidemiology of pulmonary aspergillosis in hospitalized patients and contribution of Cyp51A, Yap1, and Cdr1B mutations to voriconazole resistance in etiologic Aspergillus species. Eur J Clin Microbiol Infect Dis 42, 853–864 (2023). https://doi.org/10.1007/s10096-023-04608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04608-7

Keywords

Navigation