Skip to main content
Log in

Comparative serum bactericidal activity of meropenem-based combination regimens against extended-spectrum beta-lactamase and KPC-producing Klebsiella pneumoniae

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Combination therapies are frequently used in the treatment of multidrug-resistant Klebsiella pneumoniae infection without consensus regarding which combination is the most effective. We compared bactericidal titres from sera collected from critically ill patients receiving meropenem plus tigecycline (n = 5), meropenem plus colistin (n = 5), or meropenem, colistin and tigecycline (n = 5) against K. pneumoniae isolates that included ESBL-producing (n = 7) and KPC-producing strains (n = 14) with varying sensitivity patterns to colistin and tigecycline. Meropenem concentrations (Cmin) were measured in all samples by LC-MS/MS, and indexed to respective pathogen MICs to explore differences in patterns of bactericidal activity for two versus three drug combination regimens. All combination regimens achieved higher SBTs against ESBL (median reciprocal titre 128, IQR 32–256) versus KPC (4, IQR 2–32) strains. Sera from patients treated with meropenem-colistin yielded higher median SBTs (256, IQR 64–512) than either meropenem-tigecycline (32, IQR 8–256; P < 0.001). The addition of tigecycline was associated with a lower probability of achieving a reciprocal SBT above 8 when meropenem concentrations were below the MIC (P = 0.04). Although the clinical significance is unknown, sera from patients receiving tigecycline-based combination regimens produce lower serum bactericidal titres against ESBL or KPC-producing K. pneumoniae. SBTs may represent a useful complimentary endpoint for comparing pharmacodynamics of combinations regimens for MDR Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pitout JDD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884. https://doi.org/10.1128/AAC.01019-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, S panu T, Ambretti S, Ginocchio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M (2012) Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55:943–950. https://doi.org/10.1093/cid/cis588

    Article  CAS  PubMed  Google Scholar 

  3. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, Stefanou I, Sypsa V, Miriagou V, Nepka M, Georgiadou S, Markogiannakis A, Goukos D, Skoutelis A (2014) Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 58:2322–2328. https://doi.org/10.1128/AAC.02166-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Falcone M, Russo A, Iacovelli A, Restuccia G, Ceccarelli G, Giordano A, Farcomeni A, Morelli A, Venditti M (2016) Predictors of outcome in ICU patients with septic shock caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin Microbiol Infect 22:444–450. https://doi.org/10.1016/j.cmi.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  5. Giannella M, Trecarichi EM, Giacobbe DR, De Rosa FG, Bassetti M, Bartoloni A, Bartoletti M, Losito AR, Del Bono V, Corcione S, Tedeschi S, Raffaelli F, Saffioti C, Spanu T, Rossolini GM, Marchese A, Ambretti S, Cauda R, Viscoli C, Lewis RE, Viale P, Tumbarello M (2018) Italian study group on resistant infections of the Società Italiana Terapia Antinfettiva (ISGRI-SITA). Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Int J Antimicrob Agents 51:244–248. https://doi.org/10.1016/j.ijantimicag.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  6. Tumbarello M, Trecarichi EM, Corona A, De Rosa FG, Bassetti M, Mussini C, Menichetti F, Viscoli C, Campoli C, Venditti M, De Gasperi A, Mularoni A, Tascini C, Parruti G, Pallotto C, Sica S, Concia E, Cultrera R, De Pascale G, Capone A, Antinori S, Corcione S, Righi E, Losito AR, Digaetano M, Amadori F, Giacobbe DR, Ceccarelli G, Mazza E, Raffaelli F, Spanu T, Cauda R, Viale P (2019) Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin Infect Dis 68:355–364. https://doi.org/10.1093/cid/ciy492

    Article  PubMed  Google Scholar 

  7. Watkins RR, Deresinski S (2015) Is combination therapy for carbapenem-resistant Klebsiella pneumoniae the new standard of care? Expert Rev Anti-Infect Ther 13:405–407. https://doi.org/10.1586/14787210.2015.1018825

    Article  CAS  PubMed  Google Scholar 

  8. Stratton CW (1988) Serum bactericidal test. Clin Microbiol Rev 1:19–26

    Article  CAS  Google Scholar 

  9. Gaibani P, Lombardo D, Lewis RE, Mercuri M, Bonora S, Landini MP, Ambretti S (2014) In vitro activity and post-antibiotic effects of colistin in combination with other antimicrobials against colistin-resistant KPC-producing Klebsiella pneumoniae bloodstream isolates. J Antimicrob Chemother 69:1856–1865. https://doi.org/10.1093/jac/dku065

    Article  CAS  PubMed  Google Scholar 

  10. Clinical Laboratory Standards Insititute (1999) M21A-methodology for the serum bactericidal test: approved guideline. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  11. Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel zur Wiesch P, Busa-Fekete R, Fekete G, Pál C, Ackermann M, Bonhoeffer S (2014) Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 58:4573–4582

    Article  Google Scholar 

  12. Bi S, Yao X, Huang C, Zheng X, Xuan T, Sheng J, Xu K, Zheng B, Yang Q (2019) Antagonistic effect between tigecycline and meropenem: successful management of KPC-producing Klebsiella pneumoniae infection. Infection. https://doi.org/10.1007/s15010-019-01274-w

    Article  CAS  Google Scholar 

  13. Pournaras S, Vrioni G, Neou E, Dendrinos J, Dimitroulia E, Poulou A, Tsakris A (2011) Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time–kill assay. Int J Antimicrob Agents 37:244–247. https://doi.org/10.1016/j.ijantimicag.2010.10.031

    Article  CAS  PubMed  Google Scholar 

  14. Wiskirchen DE, Koomanachai P, Nicasio AM, Nicolau DP, Kuti JL (2011) In vitro pharmacodynamics of simulated pulmonary exposures of tigecycline alone and in combination against Klebsiella pneumoniae isolates producing a KPC carbapenemase. Antimicrob Agents Chemother 55:1420–1427. https://doi.org/10.1128/AAC.01253-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michail G, Labrou M, Pitiriga V, Manousaka S, Sakellaridis N, Tsakris A, Pournaras S (2013) Activity of tigecycline combinations with colistin, meropenem, rifampin and gentamicin against KPC-producing Enterobacteriaceae in a murine thigh model. Antimicrob Agents Chemother 57:6028–6033. https://doi.org/10.1128/AAC.00891-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Falagas ME, Vardakas KZ, Tsiveriotis KP, Triarides NA, Tansarli GS (2014) Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int J Antimicrob Agents 44:1–7. https://doi.org/10.1016/j.ijantimicag.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A (2018) Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and CARBAPENEMASE-producing Enterobacteriaceae. Clin Microbiol Rev 31:e00079–e00017. https://doi.org/10.1128/CMR.00079-17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xie J, Roberts JA, Alobaid AS, Roger C, Wang Y, Yang Q, Sun J, Dong H, Wang X, Xing J, Lipman J, Dong Y (2017) Population Pharmacokinetics of Tigecycline in Critically Ill Patients with Severe Infections. Antimicrob Agents Chemother 61:e00345–e00317. https://doi.org/10.1128/AAC.00345-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dixit D, Madduri RP, Sharma R (2014) The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev Anti-Infect Ther 12:397–400. https://doi.org/10.1586/14787210.2014.894882

    Article  CAS  PubMed  Google Scholar 

  20. Meletiadis J, Stergiopoulou T, O'Shaughnessy EM, Peter J, Walsh TJ (2007) Concentration-dependent synergy and antagonism within a triple antifungal drug combination against Aspergillus species: analysis by a new response surface model. Antimicrob Agents Chemother 51:2053–2064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients, nurses, and medical residents and technicians who donated their time and energy to complete this study.

Funding

This work was partially supported by the Italian Ministry of Health (Ricerca Finalizzata, Giovani Ricercatori, GR-2018-12367572) and the Emilia-Romagna region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gaibani.

Ethics declarations

Conflict of interest

Russell Lewis has received research funding support from Gilead Inc., Pfizer, and served on speakers or advisory boards for Merck & Co. Inc., and Gilead.

All others declare no interests.

Ethical approval

The study design was approved by the Institutional Research Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaibani, P., Lombardo, D., Bartoletti, M. et al. Comparative serum bactericidal activity of meropenem-based combination regimens against extended-spectrum beta-lactamase and KPC-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 38, 1925–1931 (2019). https://doi.org/10.1007/s10096-019-03628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03628-6

Keywords

Navigation