Skip to main content

Advertisement

Log in

Low level of hemoglobin A1c and the increased incidence of herpes zoster: longitudinal study

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Little is known about the association between glycemic status and herpes zoster. The aim of this study was to evaluate whether glycemic status, including both high and low hemoglobin A1c(HbA1c), is associated with subsequent herpes zoster. We conducted a retrospective longitudinal study in a large teaching hospital in Tokyo, Japan, from 2005 to 2016. We included all participants who underwent voluntary health check-ups at the hospital. Our primary outcome was the incidence of herpes zoster in groups of individuals stratified by HbA1c levels, which were compared using the generalized estimating equation (GEE), adjusting for participants’ demographic characteristics, social history, body mass index, and comorbidities. A total of 81,466 participants were included in this study. The mean age (standard deviation) was 46.5 (12.1), and 39,643 (48.7%) participants were male. Among them, 1751 (2.1%) were diagnosed with diabetes prior to their first visits. After a median follow-up of 1784 [interquartile range (IQR), 749–3150] days, 673 (0.8%) participants developed herpes zoster. The incidence of herpes zoster was 1.45 per 1000 person-years. Compared with the reference group (HbA1c of 5.0–6.4%), the lowest HbA1c group (HbA1c of < 5.0%) had a significantly higher adjusted odds ratio (OR) (OR 1.63; 95% confidence interval (CI), 1.07–2.48) of developing herpes zoster. The group with an HbA1c of ≥ 9.5% had a higher but nonsignificant OR than the reference group (OR 2.15; 95% CI, 0.67–6.94). Our longitudinal study demonstrated that individuals in the lowest (< 5.0%) HbA1c group had a significantly higher risk of developing herpes zoster than the reference group (HbA1c of 5.0–6.4%) after adjusting for covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mor A, Berencsi K, Nielsen JS et al (2016) Rates of community-based antibiotic prescriptions and hospital-treated infections in individuals with and without type 2 diabetes: a Danish nationwide cohort study, 2004-2012. Clin Infect Dis 63(4):501–511

    Article  PubMed  Google Scholar 

  2. Bartelink ML, Hoek L, Freriks JP, Rutten GE (1998) Infections in patients with type 2 diabetes in general practice. Diabetes Res Clin Pract 40(1):15–19

    Article  CAS  PubMed  Google Scholar 

  3. Abu-Ashour W, Twells LK, Valcour JE, Gamble JM (2018) Diabetes and the occurrence of infection in primary care: a matched cohort study. BMC Infect Dis 18(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG (2018) Risk of infection in type 1 and type 2 diabetes compared with the general population: a matched cohort study. Diabetes Care 41(3):513–521

    Article  PubMed  Google Scholar 

  5. Amy C Weintrob DJS. Susceptibility to infections in persons with diabetes mellitus. UpToDate, Waltham, MA. (Accessed 22 Feb 201.)

  6. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B (1997) Impaired leucocyte functions in diabetic patients. Diabet Med 14(1):29–34

    Article  CAS  PubMed  Google Scholar 

  7. Llorente L, De La Fuente H, Richaud-Patin Y et al (2000) Innate immune response mechanisms in non-insulin dependent diabetes mellitus patients assessed by flow cytoenzymology. Immunol Lett 74(3):239–244

    Article  PubMed  Google Scholar 

  8. Rusthoven JJ, Ahlgren P, Elhakim T et al (1988) Varicella-zoster infection in adult cancer patients. A population study. Arch Intern Med 148(7):1561–1566

    Article  CAS  PubMed  Google Scholar 

  9. El Kassas M, Wifi MN, Mahdy R et al (2017) Herpes zoster reactivation in patients with chronic hepatitis C under treatment with directly acting antiviral agents: a case series. Arab J Gastroenterol 18(1):39–41

    Article  PubMed  Google Scholar 

  10. Lin SY, Liu JH, Lin CL et al (2012) A comparison of herpes zoster incidence across the spectrum of chronic kidney disease, dialysis and transplantation. Am J Nephrol 36(1):27–33

    Article  PubMed  Google Scholar 

  11. Antonelli MA, Moreland LW, Brick JE (1991) Herpes zoster in patients with rheumatoid arthritis treated with weekly, low-dose methotrexate. Am J Med 90(3):295–298

    Article  CAS  PubMed  Google Scholar 

  12. Kawai K, Yawn BP (2017) Risk factors for herpes zoster: a systematic review and meta-analysis. Mayo Clin Proc 92(12):1806–1821

    Article  PubMed  Google Scholar 

  13. Hine JL, de Lusignan S, Burleigh D et al (2017) Association between glycaemic control and common infections in people with type 2 diabetes: a cohort study. Diabet Med 34(4):551–557

    Article  CAS  PubMed  Google Scholar 

  14. Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG (2018) Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care 41(10):2127–2135

    Article  CAS  PubMed  Google Scholar 

  15. Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. The International Classification of Diseases. . 2016; http://www.who.int/classifications/icd/icdonlineversions/en/. Accessed 9 Feb 2019

  17. Kashiwagi A, Kasuga M, Araki E et al (2012) International clinical harmonization of glycated hemoglobin in Japan: from Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig 3(1):39–40

    Article  PubMed  PubMed Central  Google Scholar 

  18. Organization. WH. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation. 2006; https://apps.who.int/iris/handle/10665/43588. Accessed 2 May 2019

  19. Consultation WHOE (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 363(9403):157–163

    Article  Google Scholar 

  20. Dungan KM, Braithwaite SS, Preiser JC (2009) Stress hyperglycaemia. Lancet. 373(9677):1798–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brink S, Joel D, Laffel L et al (2014) ISPAD clinical practice consensus guidelines 2014. Sick day management in children and adolescents with diabetes. Pediatr Diabetes 15(Suppl 20):193–202

    Article  PubMed  Google Scholar 

  22. McCowen KC, Malhotra A, Bistrian BR (2001) Stress-induced hyperglycemia. Crit Care Clin 17(1):107–124

    Article  CAS  PubMed  Google Scholar 

  23. Su YJ, Lai YC, Liao CJ (2017) Hazardous factors besides infection in hypoglycemia. Biomed Rep 6(4):480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jan IS, Tsai TH, Chen JM et al (2009) Hypoglycemia associated with bacteremic pneumococcal infections. Int J Infect Dis 13(5):570–576

    Article  PubMed  Google Scholar 

  25. Lang CH, Dobrescu C (1991) Sepsis-induced increases in glucose uptake by macrophage-rich tissues persist during hypoglycemia. Metabolism. 40(6):585–593

    Article  CAS  PubMed  Google Scholar 

  26. Maitra SR, Wojnar MM, Lang CH (2000) Alterations in tissue glucose uptake during the hyperglycemic and hypoglycemic phases of sepsis. Shock. 13(5):379–385

    Article  CAS  PubMed  Google Scholar 

  27. Clemens MG, Chaudry IH, McDermott PH, Baue AE (1983) Regulation of glucose production from lactate in experimental sepsis. Am J Phys 244(6):R794–R800

    CAS  Google Scholar 

  28. Burke CW (1985) Adrenocortical insufficiency. Clin Endocrinol Metab 14(4):947–976

    Article  CAS  PubMed  Google Scholar 

  29. Cohen S, Danzaki K, MacIver NJ (2017) Nutritional effects on T-cell immunometabolism. Eur J Immunol 47(2):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asada H, Nagayama K, Okazaki A et al (2013) An inverse correlation of VZV skin-test reaction, but not antibody, with severity of herpes zoster skin symptoms and zoster-associated pain. J Dermatol Sci 69(3):243–249

    Article  CAS  PubMed  Google Scholar 

  31. Vento S, Cainelli F, Cesario F (2006) Infections and thalassaemia. Lancet Infect Dis 6(4):226–233

    Article  PubMed  Google Scholar 

  32. Hattori Y, Yamashiro Y, Fujimoto H, Hino M, Shimizu Y, Yamauchi H (2006) The elution profiles of abnormal hemoglobins in HbA1c measurement by high performance liquid chromatography, and their interference with HbA1c analysis in Japan. Int Med J 13(2):83

    CAS  Google Scholar 

  33. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):e44–100

  34. Kim DK, Riley LE, Hunter P (2018) Advisory Committee on Immunization P. Recommended immunization schedule for adults aged 19 years or older, United States, 2018. Ann Intern Med 168(3):210–220

    Article  PubMed  Google Scholar 

  35. Harpaz R, Ortega-Sanchez IR, Seward JF (2008) Advisory Committee on Immunization Practices centers for disease c, prevention. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 57(RR-5):1–30 quiz CE32–34

    PubMed  Google Scholar 

  36. Toyama N, Shiraki K (2009) Society of the Miyazaki Prefecture D. Epidemiology of herpes zoster and its relationship to varicella in Japan: a 10-year survey of 48,388 herpes zoster cases in Miyazaki prefecture. J Med Virol 81(12):2053–2058

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Kobayashi.

Ethics declarations

This study was approved by the Ethical Committee Institutional Review Board at St Luke’s International Hospital (17-R022: comprehensive approval).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, D., Shimbo, T., Noto, H. et al. Low level of hemoglobin A1c and the increased incidence of herpes zoster: longitudinal study. Eur J Clin Microbiol Infect Dis 38, 1539–1545 (2019). https://doi.org/10.1007/s10096-019-03584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03584-1

Keywords

Navigation