Skip to main content

Advertisement

Log in

Evaluation of a stepwise approach using microbiota analysis, species-specific qPCRs and culture for the diagnosis of lower respiratory tract infections

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In clinical practice, the diagnosis of lower respiratory tract infections (LRTIs) is based on culture. The aim of this study was to evaluate whether a stepwise approach using microbiota analysis, species-specific quantitative real-time (q)PCRs and culture has the potential to be a more accurate and efficient diagnostic approach than culture alone. Sixty-two sputa obtained in a routine clinical setting from patients with a suspected LRTI were included. All sputa were analysed by culture, microbiota analysis based on the 16S ribosomal RNA gene and multiple species-specific qPCRs. Microbiota and culture data were compared to investigate whether cut-off values for microbiota analysis could be determined. For microbiota analysis, a relative abundance of 25% was identified as the cut-off value for the detection of both genera Streptococcus and Haemophilus. Microbiota analysis combined with species-specific qPCRs resulted in a significant increase in the number of positive sputa (73% vs 58%; p = 0.003) as well as in the number of identified pathogens (51 vs 37; p = 0.049) compared to culture. A stepwise approach using microbiota analysis, species-specific qPCRs and culture has the potential to be used in clinical settings for the diagnosis of LRTIs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collaborators GL (2017) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 17(11):1133–1161. https://doi.org/10.1016/S1473-3099(17)30396-1

    Article  Google Scholar 

  2. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907. https://doi.org/10.1128/JCM.02071-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edin A, Granholm S, Koskiniemi S, Allard A, Sjostedt A, Johansson A (2015) Development and laboratory evaluation of a real-time PCR assay for detecting viruses and bacteria of relevance for community-acquired pneumonia. J Mol Diagn 17(3):315–324. https://doi.org/10.1016/j.jmoldx.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  4. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9):2761–2764. https://doi.org/10.1128/JCM.01228-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, Brown SM, Sotero S, Desantis T, Brodie E, Nelson K, Pei Z (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76(12):3886–3897. https://doi.org/10.1128/AEM.02953-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stralin K, Herrmann B, Abdeldaim G, Olcen P, Holmberg H, Molling P (2014) Comparison of sputum and nasopharyngeal aspirate samples and of the PCR gene targets lytA and Spn9802 for quantitative PCR for rapid detection of pneumococcal pneumonia. J Clin Microbiol 52(1):83–89. https://doi.org/10.1128/JCM.01742-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  8. Winchell JM, Thurman KA, Mitchell SL, Thacker WL, Fields BS (2008) Evaluation of three real-time PCR assays for detection of mycoplasma pneumoniae in an outbreak investigation. J Clin Microbiol 46(9):3116–3118. https://doi.org/10.1128/JCM.00440-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuoppa Y, Boman J, Scott L, Kumlin U, Eriksson I, Allard A (2002) Quantitative detection of respiratory chlamydia pneumoniae infection by real-time PCR. J Clin Microbiol 40(6):2273–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benitez AJ, Winchell JM (2013) Clinical application of a multiplex real-time PCR assay for simultaneous detection of legionella species, legionella pneumophila, and legionella pneumophila serogroup 1. J Clin Microbiol 51(1):348–351. https://doi.org/10.1128/JCM.02510-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park HK, Lee SJ, Yoon JW, Shin JW, Shin HS, Kook JK, Myung SC, Kim W (2010) Identification of the cpsA gene as a specific marker for the discrimination of Streptococcus pneumoniae from viridans group streptococci. J Med Microbiol 59(Pt 10):1146–1152. https://doi.org/10.1099/jmm.0.017798-0

    Article  CAS  PubMed  Google Scholar 

  12. Abdeldaim GM, Stralin K, Olcen P, Blomberg J, Molling P, Herrmann B (2013) Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia. Diagn Microbiol Infect Dis 76(2):141–146. https://doi.org/10.1016/j.diagmicrobio.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  13. Greiner O, Day PJ, Altwegg M, Nadal D (2003) Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR. J Clin Microbiol 41(4):1386–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pichon B, Hill R, Laurent F, Larsen AR, Skov RL, Holmes M, Edwards GF, Teale C, Kearns AM (2012) Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, Panton-Valentine leucocidin (PVL), mecA and homologue mecALGA251. J Antimicrob Chemother 67(10):2338–2341. https://doi.org/10.1093/jac/dks221

    Article  CAS  PubMed  Google Scholar 

  15. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, Bruin J, Montijn R, Bonten M, Sanders E (2011) Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 6(2):e17035. https://doi.org/10.1371/journal.pone.0017035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  17. Dickson RP, Huffnagle GB (2015) The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 11(7):e1004923. https://doi.org/10.1371/journal.ppat.1004923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hang J, Zavaljevski N, Yang Y, Desai V, Ruck RC, Macareo LR, Jarman RG, Reifman J, Kuschner RA, Keiser PB (2017) Composition and variation of respiratory microbiota in healthy military personnel. PLoS One 12(12):e0188461. https://doi.org/10.1371/journal.pone.0188461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murphy TF, Parameswaran GI (2009) Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49(1):124–131. https://doi.org/10.1086/599375

    Article  PubMed  Google Scholar 

  20. Byrnes MC, Irwin E, Reicks P, Brodsky I (2013) Prospective, protocolized study evaluating effects of antibiotics on sputum culture results in injured patients. Surg Infect 14(1):24–29. https://doi.org/10.1089/sur.2012.022

    Article  Google Scholar 

  21. Driscoll AJ, Deloria Knoll M, Hammitt LL, Baggett HC, Brooks WA, Feikin DR, Kotloff KL, Levine OS, Madhi SA, O'Brien KL, Scott JAG, Thea DM, Howie SRC, Adrian PV, Ahmed D, DeLuca AN, Ebruke BE, Gitahi C, Higdon MM, Kaewpan A, Karani A, Karron RA, Mazumder R, McLellan J, Moore DP, Mwananyanda L, Park DE, Prosperi C, Rhodes J, Saifullah M, Seidenberg P, Sow SO, Tamboura B, Zeger SL, Murdoch DR, Group PS (2017) The effect of antibiotic exposure and specimen volume on the detection of bacterial pathogens in children with pneumonia. Clin Infect Dis 64(suppl_3):S368–S377. https://doi.org/10.1093/cid/cix101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerkhof LJ, Dillon KP, Haggblom MM, McGuinness LR (2017) Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5(1):116. https://doi.org/10.1186/s40168-017-0336-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gadsby NJ, Russell CD, McHugh MP, Mark H, Conway Morris A, Laurenson IF, Hill AT, Templeton KE (2016) Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin Infect Dis 62(7):817–823. https://doi.org/10.1093/cid/civ1214

    Article  CAS  PubMed  Google Scholar 

  24. Ozongwu C, Personne Y, Platt G, Jeanes C, Aydin S, Kozato N, Gant V, O'Grady J, Enne VI (2017) The Unyvero P55 ‘sample-in, answer-out’ pneumonia assay: a performance evaluation. Biomol Detect Quantif 13:1–6. https://doi.org/10.1016/j.bdq.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan Q, Cui S, Chen C, Li S, Sha S, Wan X, Yang R, Xin Y, Ma Y (2016) Metagenomic analysis of sputum microbiome as a tool toward culture-independent pathogen detection of patients with ventilator-associated pneumonia. Am J Respir Crit Care Med 194(5):636–639. https://doi.org/10.1164/rccm.201601-0034LE

    Article  CAS  PubMed  Google Scholar 

  26. Feigelman R, Kahlert CR, Baty F, Rassouli F, Kleiner RL, Kohler P, Brutsche MH, von Mering C (2017) Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details. Microbiome 5(1):20. https://doi.org/10.1186/s40168-017-0234-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ingrid Poot (DDL Diagnostic Laboratory) for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. A. van den Munckhof.

Ethics declarations

Conflict of interest

LD and WQ are shareholders of DDL Diagnostic Laboratory. The other authors declare that they have no competing interests.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

Patients were notified that remainders of their samples might be used for evaluation of diagnostic methods. If patients objected, samples were discarded.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table S1

Population characteristics (DOCX 23 kb)

Supplementary Table S2

Microbiota analysis data per sample (XLSX 126 kb)

Supplementary Figure S3

Comparison of Culture with Microbiota Analysis combined with Normalised Species-Specific qPCR for Identification of Pathogens in 62 Sputa. For microbiota analysis, a relative abundance of 25% for the genera Streptococcus and Haemophilus was used as cut-off value. (XLSX 68 kb)

Supplementary Table S4

Discrepancy Analysis for 10 Pathogens identified by Culture but not by Microbiota Analysis combined with qPCR. (DOCX 19 kb)

Supplementary Table S5

Discrepancy Analysis for 24 Pathogens detected by Microbiota Analysis combined with qPCR but not by Culture. (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Munckhof, E.H.A., de Koning, M.N.C., Quint, W.G.V. et al. Evaluation of a stepwise approach using microbiota analysis, species-specific qPCRs and culture for the diagnosis of lower respiratory tract infections. Eur J Clin Microbiol Infect Dis 38, 747–754 (2019). https://doi.org/10.1007/s10096-019-03511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03511-4

Keywords

Navigation